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Introduction 

Ultrasonic technique is one of widely used techniques 
for nondestructive testing (NDT) of materials [1, 2]. In 
ultrasonic testing useful information about integrity or 
geometry of the object under a test is obtained. 
Measurement configuration often encountered in NDT 
includes pulse-echo reflection technique. The ultrasonic 
wave, generated by a piezoelectric transducer propagates 
through the material and is reflected by defects and back 
surface of the sample. The signals reflected by defects 
possess information about defects size and orientation [3]. 
This method is successfully used in NDT of various 
materials. 

However, ultrasonic NDT of composite materials or 
multi-layer plastic pipes with intermediate fiber-reinforced 
layers meets serious problems [4-6]. The experimental 
investigations of plastic pipe sample with artificial defects 
have showed that detection of holes in a porous layer and 
under this layer is complicated [7]. To solve this problem 
novel measurement and signal processing methods are 
necessary. 

Problems of signal detection 
Detection of defects involves many factors, which 

influence the transmitted ultrasonic signal in the material 
under investigation. The theory of acoustic propagation in 
materials shows that the parameters of the backscattered 
ultrasonic signal depend on many factors main of which are 
the following: 

• ultrasonic signal frequency and bandwidth; 
• inspection path and distance; 
• position of defects and their size; 
• material properties. 

The material parameters influence very much detection 
of defects.  NDT of composite materials meets some 
specific problems caused by a high attenuation of the 
ultrasonic signal [1]. Attenuation of ultrasonic waves is due 
to absorption and scattering phenomena. The absorption 
converts acoustic energy into heat via viscosity, relaxation, 
heat conduction, elastic hysteresis, etc. The absorbed 
energy of the acoustic field is irreversibly lost since it is 
dissipated in the medium. The absorption is essentially 
independent of grain size, shape and volume. 

Scattering converts the energy of the coherent, 
collimated beam into incoherent, divergent waves. This is 
result of wave interaction with non-uniformities in the 
material. The scattering by micro structural components of 
a material causes serious difficulties in detection of 
discontinuities, as it reduces the signal to noise ratio 

(SNR). The scattering from boundaries between small, 
randomly distributed grains in metals create small ripples 
in the reflected ultrasonic signals, which in NDT are 
referred to as grain noise or material noise. The ultrasonic 
grain noise caused by micro-structural inhomogeneities 
limit the detection of small cracks, flaws or other defects. 
The following formula relates some of the variables 
affecting the SNR [8]: 
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where ρ is the material density; c is the sound speed; wx, wy 
are the lateral beam widths at the flaw depth; ∆t is the pulse 
duration; A(f0) is the flaw scattering amplitude at the center 
frequency; FOM(f0) is the noise Figure of Merit at the 
center frequency.  

Compared to metals, composite materials cause 
additional problems in detection of defects. One example 
may be detection of defects in multi-layered plastic pipes 
with fiber-reinforced layer. Similar problem is met in NDT 
of composite fiber-reinforced aerospace materials. Fiber-
reinforced composites possess a high acoustic attenuation 
and a high structural noise due to scattering of ultrasonic 
waves by fiber-reinforced layer and due to multiple 
reflections inside the samples caused by different acoustic 
impedances of the layers. The named problems show that 
testing of composite materials requires a special care in 
frequency selection and signal interpretation. Enhancement 
of the received ultrasonic signals can be achieved by 
applying signal processing techniques. 

In this paper a review of different signal processing 
methods for detection of defects in composite materials is 
presented. The aim of this analysis is to find out an optimal 
method for testing of composite fiber-reinforced multi-
layer materials. 

Ultrasonic signal processing methods 
For detection and characterization of defects various 

signal processing techniques are already used. In this paper 
we shall analyze theses techniques from the point of their 
suitability for detection of reflected echoes in composite 
materials with a high attenuation of ultrasonic waves 
caused by scattering. 

The simple signal processing options implemented in 
hardware and available in many conventional ultrasonic 
flaw detectors are the following: 

• analog filtering; 
• transducer damping; 
• pulse shaping and smoothing; 
• clipping the signal; 
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• automatic control of amplitude of the signal. 
The main tasks which are met in NDT of multi-layer 

lossy non-uniform materials are the following: 
• detection of ultrasonic signals, reflected by 

defects, which are masked by a structural noise; 
• modeling of ultrasonic signals scattered by non-

uniform structure of the material, for example, 
grains in metals; 

• improvement of spatial resolution in presence of 
multiple reflections inside the sample; 

• determination of position of the detected 
inhomogeneities; 

Theses tasks are solved applying various linear and 
non-linear signal processing techniques including signal 
averaging, auto and cross correlation, convolution, 
deconvolution, filtering etc. In all these techniques the 
signal is analyzed in the time domain or in the frequency 
domain. 

Time delay estimation methods 
For detection echoes in noisy signals and estimation of 

their delay cross-correlation method is widely used. In this 
method the cross-correlation function between the two 
digital sequences xT(nT) and xE(nT), representing the 
transmitted and echo signals is calculated [9]: 
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where T is the sampling interval, s(nT) is the generated 
signal, v(nT) and n(nT) are uncorrelated noises, α is the 
coefficient of estimating signal attenuation, D is the 
determined delay time. This method is in pulse-echo 
measurements used. 

The correlation of the two sequences is given by: 
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The statistical expectation of this sequence is: 
[ ] )()( DkTCkTCE ss −=α , (4) 

where Css(kT) is the sampled auto-correlation function of 
the signal s(t). For a finite energy signal equation (4) have a 
peak for k=kD. In practice the delay time D can be 
estimated by finding the peak of the correlation (3). 

In NDT applications very often the delay of the signal 
and distance till defect is found from the peak value of the 
signal envelope. The envelope of the narrowband signals 
may be determined using the Hilbert transform. [10]. In the 
case of narrowband signals it is a fast and simple method to 
estimate small time delays. The Hilbert transform of the 
reference echo signal r(t) is defined as: 
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where the integral is a Cauchy Principal Value (CPV); * 
denotes convolution. The Hilbert kernel is denoted by 
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where θ is the delay time.  
The cross correlation between s(t) and ř(t) will not 

have maximum at the time lag θ but a zero crossing. It is 
necessity of this method that it is easier to find a zero 

crossing than a peak in a noisy signal. Assuming that r(t) is 
narrowband, e.g., its energy is concentrated in frequency 
intervals B around ±f0 and that Bθ<<1, the cross correlation 
Rsř(0) can be approximated as 
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The cross-correlation method is combined with co called 
method of digital Windows [11]. In this method ultrasonic 
signals are segmented at different depths by partially 
overlapping windows. The waveforms in each window are 
cross-correlated to estimate the time-delays. Two time 
delay estimates from the overlapping windows are used to 
estimate the axial strain field in a sample under a test. 

The time-domain techniques based on application of 
correlation processing are especially useful in determining 
the exact time delay between similar, but distorted, noisy 
signals. However, this technique gives unambiguous results 
when the signals are distorted and scattered by grains non-
uniformities in materials or the echoes are overlapped. The 
main reason for it is that in this case a structural noise 
prevails, which partially is correlated with the received 
signal. 

Deconvolution in thin samples 
In thin samples the reflected signals are overlapping 

thus making detection of defects in the sample and accurate 
measurements impossible. For improvement of spatial 
resolution various filtering techniques known as the inverse 
filtering (deconvolution), usually in the frequency domain, 
are used: homomorphic (cepstrum) processing and 
parametric identification. For example, the power cepstrum 
has been proposed for detecting echoes in thin composite 
materials and  noisy seismic signals. These techniques can 
be used for relatively low signal-to-noise ratios and high 
echo distortion. 

In the power cepstrum method [12] the convolution is 
represented by the product of their respective Fourier 
transforms S(ω) and H(ω), where S(ω) and H(ω) is the 
Fourier transformed ultrasonic signal and noise. The 
system response h(t) can be separated from the signal by 
simply dividing X(ω) by S(ω) and taking the inverse 
transform of it. The inverse Fourier transform is defined of 
the log-normalized Fourier transform: 
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where q is called the quefrency and x(t) is the obtained 
waveform. The low-frequency ripples can be reduced by 
low-pass liftering: 
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is the cut-off function and qc is a cut-off quefrency which 
may be determined for a given measurement system and 
the material configuration. 
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Homomorphic deconvolution method enables to reduce 
the pulse width for imaging of defects in thin laminates of 
composites[13]. The core idea of this method is to convert 
the product S(ω)H(ω) into a sum by applying a logarithmic 
function. The complex cepstrum is defined as the inverse 
Fourier transformation of the log-normalized Fourier 
transform of the input signal, which is reverted to the time 
or the quefrency domain.  

Characterization of ultrasonic signals 
backscattered by grainy structure 

In the frequency domain processing techniques the  
power density spectrum of ultrasonic signals is exploited. It 
is assumed that echoes due to flaws differ in spectral 
content from the echoes caused by background scattering 
noise. Otherwise use of these methods is complicated. For 
detection of the reflected signals in scattering structures the 
autoregressive (AR) cepstrum is used [14, 15]. The 
autoregressive parameter identification process is closely 
related to the theory of linear prediction. 

Let us assume that the measured grain signal r(n) is an 
AR process with p parameters, then the predictive value of 
the sampled grain signal r^(n) is defined as: 
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where the ai refers to the AR coefficients and the p is the 
order of the AR model. 

The normal AR model for the estimate ai can use p 
equations and p unknown AR coefficients [15]: 
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where the correlation function Φ(i,j) is 
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The grain discrete transfer function H(z) for a second-
order AR model can be written as: 
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The complex poles of the Eq.13 give the resonance 
frequency of the second-order AR process: 
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where T is the sampling period. 
The maximum frequency is not equal to the resonance 

frequency: 
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The resonating frequency can be approximately 
represented by the frequency of the maximum energy. It 
can be correlated to the frequency shift inherent to random 
grain signals. 

A closer spectral match can be obtained using a third-
order AR system: 
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Similar to the second-order AR model the third-order 
model results in different maximum energy and resonating 
frequencies. Backscattered echoes from specimens with 
different grain sizes result in different values for the 
resonating frequency and AR coefficients. These 
coefficients can be estimated from the sample data by using 
existing processing techniques. The second- and third-order 
autoregressive models are used to evaluate the spectral shift 
in grain signals by utilizing features such as resonating 
frequency, maximum energy frequency or AR coefficients. 
These features are applied to classify grain scattering 
characteristics. 

Detection of defects by Wavelet transform 
The Wavelet Transform (WT) is a new method of 

processing transient nonstationary signals simultaneously 
in time and frequency domains [16, 17]. This method has 
generated much interest in various applications such as 
speech coding, pitch detection, image compression, 
multiresolution analysis and modeling and estimation of 
multiscale processes. In NDT it was applied for 
enhancement of detection of defects. 

The Wavelet Transform decomposes signal s(t) in a 
sum of elementary contributions called wavelets. The WT 
is the correlation between the signal and a set of basic 
wavelets. The daughter wavelets ψa,b(t) are generated from 
the mother wavelet ψ(t) by dilation and shift operations. 
The WT expansion coefficients XWT(a,b) of the signal s(t) 
are given by: 
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The Fourier transform of the daughter wavelet ψa,b(t) is 
given by: 
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where ψ(f) represents the Fourier transform of the mother 
wavelet. This equation shows the important concept that a 
dilation t/a in the time domain is equivalent to a frequency 
change of af.  

If the variables a and b are limited to integer values, 
then the Wavelet Transform becomes the discrete wavelet 
transform (DWT) [18]: 
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where ψm,n(t) constitute an orthonormals functions family. 
The discrete wavelet transform of analogue temporal signal 
is given by: 
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The Wavelet Transform was applied to improve 
ultrasonic flaw detection in noisy signals. The WT is the 
most recent technique for processing signals with time-
varying spectra. This method uses scaling in the time 
domain to scale a single function in the frequency domain. 
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The mother wavelet function is used to extract details and 
information in the time and the frequency domains from 
the transient signal under analysis. 

Detection of defects in grainy materials 
A very promising signal processing technique in 

nondestructive testing of composite materials has been 
named as split spectrum processing (SSP) [19-27]. The 
SSP technique enables to improve flaw detection in 
materials in which the coarse microstructure produces 
broadband noise of large amplitude, which masks useful 
signals. This method eliminates the need for multiple 
measurements and offers the possibility to obtain frequency 

diverse signal sets without recollecting data. SSP consists 
of two main steps illustrated in Fig.1. [19]: 

• the received signal is transformed into a time-
frequency representation by means of a filter bank; 

• the received signal is processed by a nonlinear 
operation.  

The Gaussian bandpass filters of different center 
frequencies but constant bandwidht are used to split the 
spectrum of the received signal into several frequency 
bands [20]. To these splitted time-domain signals the 
inverse Fourier is applied. For further processing of the 
signals the various SSP algorithms have been developed. 
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Fig.1. Signal processing technique with Split Spectrum Processing (SSP). 
(FFT – fast Fourier transform, IFFT – inverse fast Fourier transform) 

 
One of the first representations of signals in the time-

frequency domain is known as the Gabor decomposition 
[21]. The time signal r(t) is decomposed into a two-variable 
function R(τ, ω) according to the equation: 
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The function R(τ, ω) is the convolution of the received 

signal r(t) with the Gaussian wavelet h(t) given by: 
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Since convolution in the time domain is equivalent to 
multiplication in the frequency domain, the decomposition 
of the signals rj(t) can be expressed as: 
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where ωj is the center frequency of the filters. The 
optimization processing in the Gabor decomposition is a 
non-linear processing of the function R(t, ω) for each time 
t. A practical application of the Gabor decomposition is 
limited to analysis of short high frequency signals, whose 
decomposition involve wavelets of broad envelope and a 
large number of cycles. 

In geometric mean method the filter signals zi(t) 
i=1,2,...M can be formed as a vector z(t)=(z1(t), z2(t),... 
zM(t))T, where M is the number of filters and T denotes the 
transpose [22]. With increasing time this vector carves out 
a trajectory in the filter signal space, which is dependent on 
the number of filters and the filter parameters. 

The output signal y(t) of “filtering” process using 
geometric mean (GM) algorithm can be expressed as: 
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This algorithm is based on heuristic arguments and not 
on any detailed model of the signal or noise. 

The polarity thresholding (PT) algorithm is based on 
the principle that at time instants where the flaw signal is 
present, the corresponding SSP data set will not exhibit any 
polarity reversal since the flaw signal will dominate the 
grain noise [25,26]. If the data set contains only grain 
noise, which possesses a  zero mean value, then it is likely 
that the data will exhibit polarity reversal. By setting the 
amplitude of the processed signal to zero at time instants, 
the grain noise can be reduced significantly. The PT output 
can be expressed as 
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where tk are discrete time instants with k=1,2,...,M. 
The geometric mean and polarity thresholding 

algorithms mainly are based on the phase characteristics of 
noise free filtered signals and not on any noise model. 
Therefore it is very difficult to predict how the algorithms 
will perform for a given certain noise distribution. That is a 
serious limitation of these methods. 

A new multi-step technique was proposed which 
combines the group delay moving entropy and the SSP 
technique for improved detection of complex multiple 
targets in ultrasonic applications [23, 24]. This method is 
designed to iteratively detect the most dominant target 
present in the received signal and subsequently eliminate it 
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using a time domain window centered at the target location. 
The multiple target problems can be formulated as [23] 
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where P is the total number of targets, ai and Ti are the 
amplitude and the location parameters of the ith target. The 
group delay of the target signal can be calculated from the 
phase  
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The group delay for multiple targets is not a constant. 
To identify the optimal frequency region the group delay 
entropy was proposed [24]: 
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where k is the frequency index, N is the total number of 
data points in the discrete Fourier transform, M is the width 
of the moving window as well as the number of 
quantization levels for the group delay values, fk is the 
probability density function of the group delay. The group 
delay moving entropy method can be used effectively to 
select the optimal frequency region for split spectrum 
processing when detecting such targets. This technique has 
the potential for improving detection of defects in 
composites, multilayer materials, etc. 

The other method of signal processing is called the 
optimal detector (OD) [26]. The optimal detector 
minimizes the number of decision errors during detection 
of a known transient in additive Gaussian noise. To obtain 
the OD the multidimensional hypothesis problem is 
formulated 
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where s0=s(n0) denotes the prototype vector. To minimize 
the number of decision errors, one should decide signal 
when the inequality 
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is satisfied and P(Hk) denotes the probability of hypothesis 
Hk. The left-hand side is referred to as “the test statistic” 
and the right-hand side as “the optimal threshold”. The 
optimal detector method has been used for echo detection 
in large-grained materials. The limitation of this method is 
presumption that a Gaussian stochastic process can 
approximate the clutter noise. 

The split spectrum processing (SSP) method can be 
combined with neural networks (NN) approach [27, 28]. 
SSP is used to create frequency-diverse signal features, and 
NN is used to discriminate flaw echoes from the undesired 
grain echoes. If the elements of the vector 

( )TM txtxtxtx )(),...,(),()( 21=  (33) 
correspond to samples from a received ultrasonic signal; 
they can be fed into multilayer perceptron neural network 
(Fig.2) [27]. The input netk to the kth neuron is a linear 
combination of the delayed samples, e.g. k

T
kk wnet θ−= , 

where wk is the so-called weight vector and θk the 
threshold. The input netk can be interpreted as the output 
from a linear finite impulse response (FIR) filter where the 
weights correspond to the tap coefficients. The structure in 
Fig.2 can be interpreted as a linear filter bank followed by a 
memoryless nonlinearity.  

The neural network can be trained and adapt to a 
particular application. It was trained to process ultrasonic 
signals to output zero when there was only noise in the 
delay line and to one if there was a transient. The goal of 
the learning process is to define values for the weighting 
coefficients of all neural connections in the net for a 
practical problem. This method can be used for ultrasonic 
flaw detection in a situation where the flaw echo is highly 
masked by grain scattering echoes. 

 
D D D

s(t) x1(t) x2(t) xM(t) 

y(t)
 

Fig.2. Signal processing technique using a multilayer perceptron Neural Network (NN). 
 
 

Discussions 
The described ultrasonic signals processing methods 

are used in different areas of nondestructive testing of 
materials. Each method can solve some problems and at the 
same time possesses various limitations. For NDT of 

composite materials with a high attenuation, structural 
noise and scattering of ultrasonic signal novel signal 
processing methods are necessary. In order to determine 
most optimal way for development of new processing 
techniques the known methods should be compared and 
analyzed.  
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Transform-domain ultrasonic signal processing 
techniques were developed to determine the defects in thin 
composite materials. In all these methods broadband 
ultrasonic signals are used, which are analyzed in the time 
or frequency domains. These signals are usually or time-
limited or band-limited. The time-domain processing 
techniques can be confusing when the signals are distorted 
or the echoes are overlapped. The frequency-domain 
processing techniques are not suitable when the defects are 
close to the surfaces or the echoes are overlapped. 

 The complex cepstrum domain analysis is used to 
decompose superimposed signals due to multiple echoes or 
multi-path effects. However, the power cepstrum method 
was not suitable for signal-to-noise ratios below 18 dB 
[28]. 

The Wavelet transform is one of the latest techniques 
to emerge for processing signals with non-stationary 
spectral components [14]. The signal analysis using the 
Wavelet transform is faster than the Fourier transform 
analysis. Its application seems to be attractive for 
ultrasonic data processing, especially for detection of 
defects in grainy materials. 

The autoregressive cepstrum model is also often used 
to detect defects in grainy materials. The mean scatterer 
spacing can be resolved only when the correlation length of 
the propagating ultrasonic pulse is shorter than the spacing 
between individual scatterers. The effective resolution of 
the received echo imposes a limitation on the smallest 
resolvable scatterer spacing, while the model order limits 
the largest detectable scatterer spacing [17]. 

The split-spectrum processing technique has been 
established as an effective method of achieving flaw 
enhancement and grain noise suppression. Several 
algorithms of the SSP have been proposed. However, these 
algorithms are not robust since they are sensitive to certain 
parameter values, e.g., the number of filters in the filter 
bank and the parameters of the filters. It is not clear how to 
utilize the information available in an optimal way or even 
how to define optimality. In addition, wider use of SSP has 
been limited by the long processing time necessary for the 
signal decomposition. 

The named limitations of different signal processing 
methods show a need for novel processing algorithms. One 
possible way is combination of different methods in order 
to achieve better results in detection of defects [21, 26, and 
30].  
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R.Kažys, D.Pagodinas 

Ultragarsinių signalų apdorojimo metodai kompozitinių medžiagų 
defektų nustatymui 

Reziumė 

Vis plačiau naudojant įvairių konstrukcijų gaminius iš polimerinių 
medžiagų (plastmasių) kyla akivaizdus tokių medžiagų diagnostikos 
poreikis, pritaikant šiuolaikinius tyrimų metodus, taip pat ir ultragarsinius. 
Specifinės daugiasluoksnių polimerinių medžiagų mechaninės savybės 
apsprendžia ultragarsinių tyrimo metodų panaudojimo specifiką bei šių 
tyrimų skirtumus, lyginant su metalinių konstrukcijų defektoskopija. 
Daugiasluoksnėse polimerinėse medžiagose pasireiškia didesnis akustinių 
signalų slopinimas, sąlygojamas šių signalų sugėrimo tiriamoje 
medžiagoje bei išsklaidymo nuo daugiasluoksnės struktūros 
nehomogeniškumų. Tuo pačiu sumažėja santykis signalas/triukšmas, 
išryškėja medžiagos struktūriniai triukšmai. Todėl daugelis šiuo metu 
metalinių konstrukcijų defektoskopijoje taikomų ultragarsinių signalų 
apdorojimo metodų netinka polimerinių medžiagų tyrimams. 

Šiame straipsnyje apžvelgiami dabartiniu metu defektoskopijoje 
paplitę akustinių signalų apdorojimo metodai, pateikiami signalų 
apdorojimo algoritmai, aprašomos šių metodų taikymo sritys ir 
įvertinamos jų taikymo daugiasluoksnių polimerinių medžiagų defektų 
nustatymui galimybės. Konstatuota, kad dėl specifinių polimerinių 
medžiagų savybių tiesiogiai netinka nei vienas išnagrinėtų metodų. 
Nurodoma, kad gali būti perspektyvu panaudoti kelių metodų 
kompoziciją, sukuriant naują akustinių signalų apdorojimo metodą. 
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R.Kažys, D. Pagodinas 

Ultrasonic signal processing methods for detection of defects in composite materials 

Abstract 

Determining the defects in multi-layered plastic pipes with fiber-reinforced layer is a common problem in many fields: fiber-reinforced composites 
have the high acoustic attenuation and high structure noise resulted from in homogeneity; fiber-reinforced layer characterized by scattering of ultrasonic 
beam; all layers have different acoustic impedance et al. Named problems show that the composite materials testing require special care in frequency 
selection and signal interpretation. Enhancement of the received ultrasonic signals can be achieved by applying signal processing techniques. 

In this paper application of different signal processing methods for detection of defects in composite materials is analyzed. The aim of this analysis 
is optimal method to testing of composite materials to searching. The limitations of different signal processing methods condition the new processing 
algorithms to create. For this purpose can be used composition of different methods to best result of defects detection to achieve. To solve the specific 
problems can be compare the results of computer simulation of different signal processing methods and chose the best method. 

 


