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Introduction 

For effective use of the dynamical effects in the 
vibrational transportation devices it is important to utilize 
the knowledge of their eigenfrequencies and eigenshapes. 
The excitation element for the effective performance of the 
desired dynamical functions is to operate at the frequency 
nearly coinciding with the eigenfrequency and its location 
is to be chosen by taking the corresponding eigenshape 
into account.  

Here the eigenpairs of the fluid-structure system are 
determined by solving the axisymmetric problem using the 
finite element method. The analysis is based on [1, 2, 3]. 

Model of the fluid-structure system 
The mass matrix of the fluid or the structure is: 
 ∫= NdVNM T ρ , (1) 

where ρ is the density of the corresponding media, N is the 
matrix of the shape functions defined from: 
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where u, v are the displacements in the directions of the 
axis of coordinates x and y, δ is the displacement vector, 
that is:  
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where Ni are the shape functions, the volume element is 
defined as: 

 
 ydxdydV π2= , (4) 
 

where: 
 
 ∑= ii yNy , (5) 
 

where yi are the nodal y coordinates. 
The stiffness matrix of the structure is: 
 
 ∫= DBdVBK T , (6) 

 
where D is the matrix of elastic constants for the 
axisymmetric problem: 
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where the modulus of volume compressibility is given by: 

 ( )ν213 −
=

ET , (8) 

where E is the modulus of elasticity and ν is the Poisson’s 
ratio, and the shear modulus: 
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EG . (9) 

The matrix B is defined from: 
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that is: 
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The stiffness matrix for the fluid is: 

 ∫ ⎟
⎠
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⎜
⎝
⎛ += dVBBBcBK TT ~~2 λρ  (12) 

where ρ is the density of the fluid, c is the speed of sound, 
λ is the penalty parameter for the condition of 
irrotationality. The matrix B  is defined from: 
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that is: 
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The matrix B~  is defined from: 
 

 δB
x
v

y
u ~

=
∂
∂

−
∂
∂ , (15) 

that is: 

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

= L
x

N
y

N
B 11~  (16) 

 
 

Numerical investigation of the fluid-structure 
system 

The rectangular domain as a fluid-structure system is 
analysed. The lower boundary is the axis of symmetry and 
the displacements normal to it are set to zero. In the lower 
part of the rectangle we have the fluid and on the upper 
part the elastic structure. The displacements in the normal 
direction at the fluid-structure interface are assumed 
mutually equal, while the tangential ones may be different. 
The corresponding displacements on the left and the right 
boundaries for the same values of the y coordinate are 
assumed mutually equal.  

The first two eigenmodes correspond to the rigid body 
motions and are shown in Fig. 1. The seventh and the 
eighth eigenmodes both of the same frequency are shown 
in Fig. 2. 

 

 
a) 
 

 
b) 

Fig. 1. The a) first and b) second eigenmodes corresponding to the rigid body motions (the eigenmode is in black, the structure in the status of 
equilibrium is grey) 

 

 
a) 

 
b) 

Fig. 2. The a) seventh and b) eighth multiple eigenmodes (the eigenmode is in black, the structure in the status of equilibrium is grey) 
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Experimental analysis of the axi-symmetric fluid − 
structure system 

A number of experimental studies are needed in order 
to ensure high dynamic accuracy of operation of the 
vibratory dynamics of the flow of liquid substances. In 
most cases the exciting frequencies of the axi-symmetric 
working tube are quite high, and the amplitudes 
corresponding to them are measured in micrometers. 
Therefore the holographic method can be effectively 
applied for the visual representation of wave processes 
taking place in the tubular vibratory valve ([4], [5]). The 
most effective method for studying the standing wave 
processes is the method of holographic interferometry with 
time averaging ([8], [9]). It should be noted that the most 
clearly expressed bands in the holographic interferograms 
are those recorded at the positions of minimum amplitudes 
([10]). It is important to obtain the distribution of the 
vibration amplitudes not only in the middle of dark 
interference bands, but also at arbitrary positions on the 
surface of the tube.  

 

 

Fig. 3. The structural diagram of the holography stand: 1 - the axi-
symmetric fluid − structure system; 2 - the high frequency 
signal generator; 3 - the amplifier; 4 - the frequency meter; 5 - 
the voltmeter; 6 - the source of coherent radiation; 7 - the 
beam splitter; 8, 9 - mirrors; 10, 11 - lens; 12 - the 
photographic plate; 13 - the camera 

The amplitudes of vibration of the structure are 
determined using the methodology presented in [11], [12]. 
Fig. 3 presents the structural diagram of a stand for 
experimental analysis of the axi-symmetric fluid − 
structure system. The stand contains a vibratory valve for 
controlling the flow of the liquid which consists of a 
tubular working tube which is harmonically excited by the 
high-frequency signal generator 2 and the amplifier 3. The 
signal frequency is monitored by the frequency meter 4, 
the voltage amplitude of the power supply is monitored by 
the voltmeter 5. The optical circuit of the stand includes a 
holographic installation with a helium-neon laser which 
serves as a source of coherent radiation. The beam from 
the laser 6 splits into two mutually coherent beams passing 
through the beam splitter 7. The object beam, reflected 
from the mirror 8, is split by the lens 10 and illuminates the 
surface of the tubular working tube 1 and, after reflecting 
from it, impinges on the photographic plate 12. The 

reference beam, reflected by the mirror 9, and expanded by 
the lens 11, illuminates the holographic plate 12 where the 
interference structure is recorded. 

 

 

Fig. 4. Holographic image of the vibrating tube, angle of illumination 
π/2 

 

 

Fig. 5. Holographic image of the vibrating tube, angle of illumination 
π/4 

 

 

Fig. 6. Interpretation diagram of the axi-symmetric vibrations of the 
analyzed tube 

Holographic interferograms of the axi-symmetric 
vibrations of a vibratory tube are presented in Fig. 4 and 
Fig. 5. Fig. 6 presents the interpretation diagram for the 
holographic image presented in Fig. 5 and makes it 
possible to conclude that transverse vibration of the tube is 
sufficiently uniform. It should be noted that the frequency 
of excitation must be selected with care, as the best 
performance of the vibratory valve is taking place at the 
resonant frequencies. If the excitation of the transverse 
vibrations is far away from the resonance frequencies of 
the tube, the operation of the tabular valve turns to be 
hardly controlled. 

The obtained results enable to optimize the design of 
the axi-symmetric fluid − structure vibratory systems for 
controlling and dosing the liquid flow. The following 
parameters of the system are analyzed and optimized: a) 
selection of the material of the working tube; b) selection 
of the area of the transverse cross section of the axi-
symmetric tube; c) location of the transverse vibration 
nodes in the tube; d) determination of the transverse 
vibration amplitudes along the tube. Maximum uniformity 
of the transverse vibrations in the axi-symmetric vibratory 
tube is achieved due to this optimization which leads to 
more stable operation of the whole system. 

Conclusions 
The main feature of the presented analysis of the 

axisymmetric problem of fluid-structure interaction is that 
the displacements in the normal direction to the fluid-
structure interface are assumed mutually equal, while the 
tangential ones for the ideal compressible fluid may be 
different.  
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The obtained multiple eigenmodes for the analysed 
periodic system may be effectively used for the excitation 
of wave motion in the fluid transport systems. 

Experimental investigations of the axi-symmetric 
vibrating tube proved the validity of the numerical model 
used to describe the analyzed fluid − structure system.  
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Skaitinis–eksperimentinis ašiasimetrio skysčio transportavimo 
įrenginio tyrimas 

Reziumė 

Gautos tampraus kūno ir skysčio ašiasimetrio uždavinio pirmosios 
savosios formos. Kartotinės formos periodinėje konstrukcijoje taikytinos 
banginiam transportavimui. Eksperimentiniai holografiniai tyrimai leido 
pagrįsti skaitinio modelio pritaikomumą.  
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