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Introduction 

The emerging concept of active constrained layer 
control of vibrating structures involved the application of a 
viscoelastic layer constrained by a piezoelectric 
constrained layer. Attempts have been made to optimize 
the performance of the constrained layer treatments by 
selecting the optimal thickness, length, elasticity of the 
viscoelastic core [1, 2, 3].  

This paper deals with the control of dynamics of an 
elastic structural plate by application of a layer of material 
the parameters of which can be varied by selecting the 
thickness of the layer.  

Another problem occurring in such a type of 
applications is the appropriate interpretation of the results 
of simulation. Comparisons between the vibrations of the 
core and the controlling surface are very important from 
the point of design of controlling elements, though 
conventional visualization techniques can produce rather 
poor results in that sense. Therefore there exist a definite 
need for developing more appropriate visualization 
techniques capable of detection small variations from a 
predefined regime of dynamic motion.  

The plate as a structural element by taking into 
account the layer of material on its surface is analyzed. 
This serves as a model of the transporting element with the 
interacting transported material. The simplified model of 
the transported material consists of the distributed springs 
with masses performing vertical motion and without 
mutual interaction. This is a modification of the Winkler 
type elastic layer known in applied elasticity [5]. The finite 
element with four degrees of freedom per node (the 
deflection and the two rotations of the plate and the 
deflection of the layer) is developed for the analysis of the 
described systems. The eigenmodes are calculated and 
each of them provides the two surfaces: the first one 
describing bending of the core plate, another – the motion 
of the control layer.  

Model of the plate with the layer of material 
The model of the analysed system is presented in 

Fig.1. It can be noted that the analysed system is a 
continuous system in the sense of its core and control 
elements. Though the principal scheme in Fig. 1 involves 
lumped parameters for the Winkler layer and the external 
mass layer, it is understood that both layers are continuous. 
The discrete schematic visualisation can be explained by 
the fact, that the external mass layer is described as having 
no inter-element relations. Otherwise it could be 
interpreted as a layer of normal deformable body, but in 
that case it would be not applicable for investigation of the 

effects of dynamic conveyance. On the other hand, the 
Winkler stiffness layer must perform the function of an 
active vibration controller. That requires the possibility of 
dynamic stiffness variation. Conventional FEM modelling 
would require re-calculation of global system matrixes in 
every time step. 

Development of a numerical model of the described 
system required the derivation of new element which is a 
modification of the general plate element presented in [4].  

 

Fig. 1. The model of the plate with the layer of material 

 
The nodal variables are the deflection of the plate w, 

the rotation of the plate about the x axis Θx, the rotation of 
the plate about the y axis Θy, the deflection of the layer w* 
(it is assumed that v = −zΘx, u = zΘy).  

The potential energy of the layer of the distributed 
springs is: 
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and k is the distributed stiffness of the layer. So, the 
stiffness matrix takes the form: 
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where 
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and E is the modulus of elasticity, ν is the Poisson’s ratio, 
h is the thickness of the plate, ks is the shear correction 
factor assumed equal to 1.2. 

The kinetic energy of the layer of the distributed 
masses is: 
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where m is the distributed mass of the layer. So the mass 
matrix takes the form: 
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and ρ  is the density of the material of the plate. 

Numerical investigation of the vibrations of a plate 
with the control layer of material 

The analyzed object is a rectangular elastic plate with 
a layer of material with a fastened edge of the plate.  

One of the powerful methods of visualization of 
dynamic results from FEM analysis is construction of 
interference fringe pattern corresponding to the time 
average holographic interferometry. It has many 
advantages over other vibration measurement techniques. 
It is a whole field non-invasive method and can be 
exceptionally useful if the amplitudes of the analyzed 
vibrations are in the range of micrometers. Though there 
exist a number of algorithms and techniques used for the 
interpretation of the measured holograms [6], the 
reconstruction of motion of structures from those 
holograms is a sensitive procedure in the sense of error 
accumulation. 

The stroboscopic holographic image of the tenth 
eigenmode of the deflection of the layer of material is 
presented in Fig. 2.  

 

 
 

Fig. 2. The stroboscopic holographic image of the tenth eigenmode of 
the deflection of the layer of material 

As mentioned earlier, visualization of holographic 
interference patterns has a number of drawbacks. Detection 
of variations from reference patterns requires the 
application of sophisticated algorithms [7], but even in that 
case the reconstructed patterns do not bring any 
information about the phase of the vibrations. Particularly, 
in vibration control applications, the information about the 
phase of vibrations is vital. Therefore, there exists a 



ISSN 1392-2114 ULTRAGARSAS, Nr.1(46). 2003. 

 22

definite need for the development of new visualization 
techniques which could represent both the valuable 
information about the formation of fringes, both the phase 
of the occurring vibrations.  

For such a representation of dynamic results the 
intensity mapping produced by holographic fringes 
construction algorithms  is further on distorted by mapping 
represented in Fig. 3. Here w stands for the scalar 
deflection field of the plate; I – the intensity of the image; 
Imax – the maximum intensity associated with the image. 
This representation has the advantage over the usual 
representation by isolines or the holographic image 
because it enables to see the direction of change of the 
scalar variable. 

 

Fig. 3. The secondary intensity mapping used in the representation of 
dynamic results 

 
The tenth eigenmode of the deflection of the layer of 

material represented by the intensity mapping is shown in 
Fig. 4.  

 

 
 

Fig. 4. The tenth eigenmode of the deflection of the layer of material 

 
 
The regions of positive and negative deflections of the 

same eigenmode of the plate are shown in Fig. 5. It can be 
noted that the information about the phase of vibrations is 
preserved in Fig. 4.  

Fig. 6 represents the vibrations of the control layer. 
This figure can be clearly interpreted from the point of 
fringe counting technique, and enable straightforward 
phase interpretation. 

 
 

Fig. 5. The regions of positive (grey) and negative (black) deflections 
of the tenth eigenmode of the plate 

 
 

 
 

Fig. 6. The tenth eigenmode of the deflection of the plate 

Conclusions 
The new visualization technique is developed for the 

interpretation of dynamic FEM results. It has a number of 
advantages over existing techniques, particularly over the 
time average laser holography fringe pattern visualization. 
While preserving the useful properties of holograms it 
enables straightforward phase interpretation. 

The developed technique is applied for the 
visualization and interpretation of the Winkler type active 
vibration control mechanism.  
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M. Ragulskis, V. Kravčenkienė 

Plokštelės su medžiagos sluoksniu osciliacinės dinamikos tyrimas 

Reziumė 

Sukurtas naujas dinaminių FEM rezultatų vizualizacijos metodas, 
turintis nemaža pranašumų, palyginti su kitais vizualizacijos metodais, 
taip pat ir su holografinių juostų formavimo metodais. Išlaikydamas 
naudingas holografinio metodo savybes, naujasis metodas leidžia 
tiesiogiai interpretuoti fazines reikšmes.  

Šis metodas pritaikytas Vinklerio tipo vibracijų valdymo 
mechanizmo virpesiams vizualizuoti ir interpretuoti.  
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