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Introduction 

The law of air sound insulation has been known since 
old times. It defines the property of sound insulation which 
depends upon the Mass Law, i.e., the heavier the 
construction, the better air sound insulation. In calculation 
of air sound insulation, the weight of m2 of this 
construction, i.e., kg/m2 is taken into consideration. In the 
course of time, the need of lighter partition constructions in 
multistoried buildings arose. Acousticians in cooperation 
with architects have been searching for ways to reduce the 
weight of constructional partitions not decreasing the 
properties of sound insulation. Thus, new theories of sound 
insulation have been originated and experimentally 
corroborated. 

Two main types of sound insulation and their 
properties are discussed in this article. 

1. Some sound insulation of a single wall 
The most common constructions used in buildings are 

flat one-layer and multi-layer constructions. For its proper 
purpose these constructions may be used for partitions – 
wall constructions and slabs – floors and ceiling sound 
insulation constructions.  

A. Normal incidence mass law 
When a plane wave which angular frequency in 

fπω 2=  is incident normally on an infinitely wide thin 
wall some is reflected and some transmitted. Let the sound 
pressures of the incident, reflected and transmitted sounds 
be denoted by ip , rp  and tp , respectively, as shown in 
Fig. 1 (a). The wall is excited by the sound pressure 
difference between the two surfaces of the wall and the 
equation of motion is 

 ( )
dt
dvmppp tri =−+  (1) 

where m is the surface mass of the wall, and v is its 
velocity. 

In the case of simple harmonic motion, d/df –jω can be 
used 

 ( ) mvjPppp tri ω==−+  (2) 

 
v
Pmj =∴ ω  (3) 

This is the impedance per unit area of the wall. Since it is 
assumed that the particle velocity of the air adjacent to 
both wall surfaces is equal to 
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Fig. 1. (a)  Sound insulation of single wall and (b) its analogous circuit 
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From Eq. 2 and 4 
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Therefore, the transmission loss is 
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 (6) 
Generally, ( )2mω >> ( )22 cρ ; hence 
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which is proportional both to frequency and the surface 
mass m of the wall. This is called the 'mass law' for 
airborne sound insulation. Doubling the weight of the wall 
or the frequency gives an increase of 6 dB in ^Q– This wall 
motion may be expressed by an analogous electrical circuit 
as shown in Fig. 1(b). In this circuit, if no wall exists, it 
becomes as shown in Fig. 2 (a) and at the wall surface the 
sound pressure is ip . When the wall is completely rigid in 
which the velocity becomes zero,  the  current  is  zero, 
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Fig. 2. Analogous circuit: (a) Open air and (b) Rigid wall 
 

thus the circuit is open as shown in Fig.2 (b), and at the 
wall surfaces 

 iriri ppppp =∴=+ ,2 . 
In Fig. 1 (b), at the junction I of the circuit, the 

impedances to the left and the right are denoted by Z1 and 
Z2 respectively. Since there is no internal absorption, the 
transmission coefficient τ  can be expressed by Eq. 1, 
where cZ ρ=1 , cmjZ ρω +=2 , then Eq. 6 is obtained. 

B. Random incidence mass law 
When the incident angle is θ , Eq. 8 can be derived as 

follows: 
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If we are calculating the average value in the range 
θ  = 0 ~ 90°, Eq. 9 is obtained as the 'random incidence 
mass law' 
 Rrandom=R0–101og10(0·23/R0). (9) 

 

However, in an actual sound field using the range of 
θ  = 0 ~ 78°, is more realistic and the following 
approximate formula is obtained: 
 

 Rfield=R0 –5dB, (10) 
 

which is recognised as closer to reality and called the 
“field incidence mass law”. 

2. Sound insulation of cylindrical housings 
Industrial development and application of new 

technologies made it necessary to apply cylindrical shells 
and housings for noise reduction. The literature indicated 
[21] presents the application of different cylindrical 
housings and selection of their shapes. We shall discuss the 
sound insulation properties of universal cylindrical 
housings. 

Whenever a question concerning sound-insulation of 
cylindrical housings comes forth, it is at once followed by 
another: what is the difference between a cylindrical 
housing and a cylindrical shell, sound-insulation of which 
has been studied by a good variety of authors? This 
question is not so simple, though some demarcation 
between them is possible. 

When one speaks about housings, he has in mind 
certain sources, the noise of which is hindering. This noise 
may be considerably diminished, if the sources are 
surrounded by some sound insulation device – and that is a  
housing. We speak about sound insulation of a cylindrical 

shell in cases these sources cannot exist without a shell. 
For example, pressure fluctuations that are due to the fan in 
a ventilating system or the booster in a gas piping. Further 
on we shall keep to that position. 

The first attempts to calculate and apply cylindrical 
housings were linked with the noise of extensive pipings, 
which sometimes reaches considerable values. Thus, for 
example, the noise of gas pipings from outside reaches 
110–115dB. Computations [1] have shown that maximum 
noise is determined by discrete frequencies, linked to the 
blade frequency of the booster f1, where n is the rotation 
frequency and z is the quantity of the booster blades, and 
with its harmonics. 

Since the frequency is commonly below the first 
critical frequency of the piping and the damping of 
vibrations along it constituted only some decibels per 50m, 
it was clear that noise is caused by zero-order normal 
("almost" plane) wave. Therefore quite a number of works 
appeared that were designed for elaboration of calculation 
methods and designing of the housing for reducing its 
noise [1,2,3,4,5,6]. In practice, this problem occurs rather 
frequently, thus we shall make more detail investigation 
into it. The essence of the problem is that during axially 
symmetric vibrations inside the piping the sound pressure 
can be written in the form of 

 ( ) zeJpp ki 22
12

0101
µµ −= , (2.1) 

where J0 Bessel zero-order function, µ  and 

22
1 µγ −= k  radial and axial wave numbers, 11 / ck ω= , 

wave numbers in the medium inside the piping, and 10p  is 
a complex amplitude of vibrations. 

If we assume that impedance of the housing for normal 
axially symmetric vibrations is equal Z0 [13], while the 
impedance of radiation into the environment is Zu31 
[14,15], (then we shall come to dispersion control [14] in 
the form of impedance 
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Here, ( )1
0H  and ( )1

1H  are the Hankel functions of the first 
kind of the zero and first order, a is the radius of the 
piping, and 1110 / µωρ= iZ , 2220 / µωρ= iZ , 1ρ  and 2ρ  is 
the density of mediums inside and outside the piping. 
Radial numbers in mediums outside and inside the piping 
arc linked together by the correlation 
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where 22 / ck ω=  – the wave number in the environment. 
The roots of Eq. 2.2 determine the permissible normal 

waves inside the piping, which may exist. For the cases of 
similar and different mediums inside and outside at n = 0 
they are calculated in works [14, 15]. 

Among them there is a zero root 00µ . It differs from 
the others since it is complex, very small according to the 
modules, i.e. 100 <<µ a  and its imaginary part 
significantly exceeds the real one. With respect to this 

( ) 12
0 ≈µJ  and (1) we can approximately write 
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 ziklpp 1101 ≈  (2.4) 
 

In other words, this root corresponds to the "almost" 
plane wave, which propagates along z-axis of the piping. 

In the first approximation, which is valid when  
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where hm ρ= , ρ  and h  are the density of the material 
and thickness of the shell, acf nn π= 2/  is the longitudinal 
resonance frequency of the shell, on which the length of 
longitudinal wave is placed along the circumference of the 
shell, 0f  is the frequency of coincidence, at which length 
of a flexural wave in the shell aλ  equals to the wave 
length in the medium. It should be noted that 0z  never 
turns into zero, if 02 ffn > . 

Substituting Eq. 2.6 into Eq. 2.5 we shall obtain 
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Since 00µ  is imaginary, ( ) ( )000000 µµ IiJ = , where 

0I  is the modified Bessel's function. One more peculiarity 
of that wave is revealed. If the mediums inside and outside 
the shell are the same, then 00002 µµµ i== . In the 
unbounded space the outside wave can be written in the 
form 
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where 20p  is the pressure amplitude, 0k  is the 
McDonald's function (modified Hankel's function). It 
exponentially coincides with the increase in r. Thus, this 
wave does not radiate the sound outside and can spread 
along the pipe for extensive distances. The same will be 
also observed in the case the sound velocity in the internal 
medium 1c  will be less than that in the external medium 

2c . Another picture will be observed when 12 cc > . In 
accordance with Eq. 2.3  
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2µ  becomes valid. Practically at the frequencies 

( ) 0032 ff ÷> , 2
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2 kk −≈µ  and from the pipe the wave 

will spread at the angle 
 

 ( )12 /arcsin cc≈Θ  (2.8) 
to r axis. 

Analogous situation occurs in the case of similar 
mediums, if the medium inside moves. Then the velocity 
of sound propagation in the direction of movement will be 
greater than the sound velocity in the motionless medium. 

In [2, 6] the problem of sound insulation of the zero 
wave with the help of a sound-measuring housing, 
represented in the form of the coaxially arranged 
cylindrical shell, is considered in detail. The piping of 
radius and the housing of radius are considered infinitely 
extended in length. Sound pressure 
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which is created by the piping without the housing at some 
point ( )zr, , is obtained by a usual method by satisfying 
the boundary conditions when 1ar = , expressing the 
equation of the radial velocities of the piping 0v  and the 
medium. 

When determining the sound pressure ( )zrp ,3 , which 
is created by the piping with the housing, the following 
assumptions were made: 

1. A thin housing, i.e. radial oscillation velocities of its 
surfaces inside and outside are similar. 

2. Radial velocity of the piping 0v  does not change if 
the housing is installed.  

Sound pressures below and behind the housing are 
written in the form 
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The unknown amplitudes A, B and p30 are defined by 
the boundary conditions in the piping (the equation of the 
radial velocity of the medium of the velocity 0v ) and in 
the housing (the equation of the radial velocities and the 
equation of motion for a cylindrical shell in the form of the 
impedance). The sound insulation R is defined in respect to 
pressure amplitudes at some point (r, z), created by the 
piping with and without the housing: 
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In Eq. 2.6 a case when mediums inside and outside the 
housing are similar, i.e. 32 kk =  and 32 µ=µ , 32 ρ=ρ  is 
presented. It was obtained that 
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where 2oбZ  – the impedance of the shell (housing) for 
axially symmetric vibrations. It should be noted that the 
expression Eq. 2.11 holds true for any normal axially 
symmetric waves, not only for the zero wave. Everything 
is defined by selecting the corresponding values of the 
radial wave number 2µ  and by correctly expressing the 
impedance 02Z  for a normal wave under consideration. 
The work [3] gives a description of a practical method for 
calculating sound insulation of the housing of the zero 
wave. Diagrams of the amplitudes and phases of the 
Hankel function, significantly simplifying computation, are 
provided. 

It is shown that minimum sound insulation is observed 
in two cases: 

1. The impedance of the shell approaches zero in cases 
of frequencies close to the critical frequency 

22/ acf nn π= , at which one longitudinal wave-
length fcnn /=λ , will be equal to the 
circumference of the housing and to the coincidence 
frequency 02f  on which the flexural wavelength in 
the housing equals the wavelength in the medium 

cλ . 
2. On the resonances of the medium, at the clearance 

between the piping and the housing. 
Since the dimensions of the clearance are not large, 

these resonance frequencies, as a rule, lie higher than the 
frequency nf . 

Here is presented a typical curve of dependence R 
upon the frequency, calculated for the aluminium housing 
h = 0,1 cm in thickness for the piping with radius 

361 =a  cm and the clearance between the piping and the 
housing 5=d cm (see Fig. 2.1).  

 

 
 

Fig. 2.1. Sound insulation frequency dependence of a housing 
 
In [7] a case is presented when the media inside and 

outside the housing are different. It is of importance for 
practice since the application of the soundproofing 
materials at the clearance under the housing may greatly 
increase sound insulation of the housing at the frequencies 
where it has minimum values. It has been shown that at the 

optimum clearance 5≈d cm a simplified equation may be 
used for assessing the minimum sound insulation at the 
resonance frequencies: 

 

 dRR mКОЖ β7,8min += , (2.12) 
 

where mβ  is the attenuation coefficient of the sound-
absorbing material. 

In [8, 9] computation data of frequency dependencies 
of sound insulation R of steel and aluminium housings at 
different clearances d between the piping and the housing 
are provided. It follows that optimum values d are from 5 
to 6 cm, and the optimum value of housing thickness  
h=1–1,5 mm. 

In [12] another case is presented which is of practical 
interest for noise decreasing with the help of the housing, 
when the extended piping performs beam-like vibrations. 
They occur frequently, for example, at vibrations of water-
supply pipes. The computation is based on an approximate 
equation of housing oscillations from [17], which presents 
an equation of flexural vibrations of the beam with a 
correction for rotational inertia. In the same manner as 
previously an expression for R type (Eq. 2.11) is obtained. 
All conclusions earlier also hold true in this case. 
Minimums of sound insulation are observed at the 
coincidence angles of the housing and at the resonance 
frequencies of the medium at the clearance between the 
piping and the housing. 

Analogous expressions (Eq. 2.11) for sound insulation 
are also obtained for other normal waves with azimuthal 
numbers not equal to zero. In work [10] sound insulation 
for different n can be written in the form 
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where ( )1
nH  and ( )2

nH  are the Hankel functions of n-th 
order of first and second kind, a point above the Hankel 
functions means an argument derivative. Minimum sound 
insulation is obtained on the same conditions as for a zero 
wave: at the small values of the impedance 2oбZ  and at 
the appearance sound waves between the piping and the 
housing. 

In [11] an expression is derived for sound insulation of 
cylindrical shells when excitation and sound pressure 
depend only on r and ϕ  (with no wave propagation along 
z-axis). As to its form, it almost doesn't differ from Eq.2.11 
and Eq. 2.13. The impedance of the housing used in it is 
written in the form [16]∗ 
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∗ Note. In these cases when a temporary factor is used an imaginary unit 
is written as.  
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where 22 / ck ω=  is the wave number of longitudinal 

vibrations in the material of the shell, 2
2

2 / Rah=β , 

( )22
2 1/ σ−=γ Eha , E and σ  are the Young's modulus and 

Poisson's ratio of the material. Computation curves of 
sound insulation of the brass shell, 1 mm in thickness, 
radius 5,72 =a cm (an inner pipe has radius 51 =a  cm) 
for normal waves with n = 2, 3, 4, 5 are provided. To 
confirm computations measurements of brass pipes, the 
ends of which were produced soundproof, were conducted 
in the room with small reflections. The experiment showed 
that at critical frequencies a decrease in a sound insulation 
up to – 10 dB was observed (i.e. sound on these 
frequencies intensifies), as it was predicted by theory. In 
addition, it was noticed that critical frequencies are shifted 
to the direction of the higher frequencies. 

In the above works infinite cylindrical shells were 
considered. For practical purposes it will be of special 
interest to study the effect of the limited dimensions both 
of the sources and of the housings on sound insulation. 
Lately quite a number of works on these problems 
appeared in the literature. 

In [18] a problem on sound insulation of the 
cylindrical shell of length l from the extended sound 
sources is being solved. The source is represented in the 
form of a cylinder with radius 0a  and is located normally 
to the two rigid parallel walls. It is considered that 
arbitrary distribution of radial velocities are present on its 
surface. The housing of radius ka  is located coaxially with 
the sound source. To simplify the solution of the problem 
boundary conditions of securing the source and the 
housing on the butt ends are thus selected that 
eigenfunctions along z-axis will be the same in the medium 
and in shells, i.e. ( ) zkz mm cos=ψ , where lmkm /π=  and 

...,1,0=m  – the integral number. Then the pressure 
expansion is possible in the medium inside and outside the 
housing, as well as that of the radial velocities of the 
source and the housing in series according to ( )zmψ  and, 
having satisfied boundary conditions, it is possible to 
obtain the unknown quantities of pressure amplitudes. 
Sound insulation of the shell for normal waves in that case 
is written as  
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Here, 22 / ck ω=  – the wave number in the medium, 
22

2 mrm kkk −=  – the radial wave in the medium, 

arguments of derived Hankel functions nH&  and ( )0aHn
&  

are equal correspondingly ( )krmak and ( )0akrm . The 
impedance of the shell for a normal wave (m, n) is written 
as 
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where tt ck /ω= , 00 / ck ω= , nn ck /ω= , 

4
0

2
4 / Bmk ω=  

–  the wave number of flexural vibrations in the plate,  
 ( )23 112/ σ−= EhB  

– flexural rigidity of the plate, from which the shell is 
made, E and σ  – Young's modulus and Poisson's ratio of 
the material, tc , nc  and 0c  – the velocities of shear and 
longitudinal wave propagation (in the rod and in the plate, 
correspondingly). The velocities nc  and 0c  are linked 

with the relation ( )22
0

2 1 σ−= ccn .  
The relation (2.15) as to its type is fully identical with 

(2.11) and (2.13). The difference consists only in different 
representation of radial and axial wave numbers in the 
expressions for and the impedances of the shells. As a 
result, the previously drawn conclusions are also valid 
here: minimums of sound insulation are observed if the 
impedance 0=mnZ  and at the resonance’s of the medium 
layer under the housing. At frequencies in which 
( )22

nb kk −  does not lead to 0=mnR . The value of sound 
insulation at these frequencies lmcfm 2/2= l equals 
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i.e. determined by the value mnZ . 

Note should be taken of the peculiarity mnR ; in 
addition to a wave with m = 0, which propagates along      
r-axis at all frequencies, each normal wave has a critical 
frequency mf , below which there is no propagation of the 
m-th wave. It attenuates exponentially along r. Sound 
insulation then has great values and no minimums, linked 
with the medium resonance’s at the clearance under the 
housing. Before the frequency lcf 2/21 =  only a wave 
with m = 0 propagates. If the parameters of the housing are 
selected such that it will possess the good sound insulation 
of a zero wave, then the housing will decrease effectively 
the noise at low frequencies. 



ISSN 1392-2114 ULTRAGARSAS, Nr.1(46). 2003. 

 29

In the present work sound insulation using various 
methods for excitation is considered, as well as the 
computation R results for the shell with 3=l m, 

3,02 =a m and 2=h  mm (Fig. 2.2) when n = 0 and a 
small radius of the source 0a  as compared with the 
wavelength in the air are provided. Here, along abscissa 
axis the unlimited frequency 0/ ff=α  is plotted, where 

kacf π= 2/20 . The diagram shows that curves differ 
significantly only in the area of the critical frequency. 
Higher they merge together. 

In /19/ an analogous problem is considered, but the 
sound source is located outside the casing, while the point 
at which the noise decreases is inside. The solution is 
found the same as in [18], only for transferring the 
beginning of the coordinates the theorem of addition for 
cylindrical functions is used. 

 

 
 
Fig. 2.2. Sound insulation frequency characteristic of the first three 

modes 
 
The general expressions for sound insulation using 

various methods of excitation are obtained. It was shown 
that R depends on the position of the observation point. If 
it is located on the axis of the housing, then at low 
frequencies at kacff π=< 2/21  sound insulation from 
the external and internal sources is similar. 

This conclusion also holds true at the concentrated 
excitation, when a small surface of the radiator emits and 
its radius 0a  is small. 

In [20] the problem on sound insulation, restricted by 
the rigid shell, is solved. The radiator with radius 0a  in it 
represents part of the infinite rigid cylinder of length e, on 
which an arbitrary distribution of radial velocities is preset. 
The housing represents the elastic shell of length e, which 
is also part of the infinite rigid cylinder of radius ka . The 
medium, characterized by the plane 2ρ  and sound velocity 

2c , is inside and outside the housing, The side walls at the 
clearance between the radiator and the housing at 0=z  
and ez =  are considered rigid, in consequence of which 
eigenfunctions ( ) zkz mm cos=ψ , where emkm /π=  and 

...,1,0=m  – the integral number. As in /18, 19/ boundary 
conditions of securing the shell and the radiator at 0=z  
and ez =  are such that the eigenfunctions of radial 
displacement of the housing and the radiator are also 

( )zmψ . Making use of plotting along ( )zmψ  of the radial 
velocities of the radiator 0V , the housing kV  and the 
sound field at the clearance ( )zrPr ,, ϕ , it is possible to 
find the link between the amplitudes of normal waves 

kmnV  and mnV0 . 
Sound pressures, formed by the radiator and the 

housing in the unlimited space are written in the form of 
Fourier integrals: 

( ) ( ) dzerkkHkpep ikz
mn

in

n
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⎞
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From the boundary conditions at 0ar =  and kar =  
the relation between ( )kp0

~ , ( )kpk
~  and mnV0  of the 

radiator is determined. Integrals in the expressions 0
~p  and 

kp~  are assessed by the method of passage. 
As a result expressions for sound insulation at 

arbitrary excitation are obtained. Radiators in the form of 
the pulsating cylinder and the concentrated source of the 
small dimension were considered separately. 

It is shown that in the case of the pulsating cylinder 
RRR ∆+= 0 , where 0R  – the known sound insulation of 

the infinite cylindrical shell, which performs the radial 
vibrations. The second part R∆  contains the dependence 
on the angle Θ  between the plane 0=z  and the direction 
at the point of observance. A diagram is provided for 
computing. 

In the case of the concentrated excitation sound 
insulation at 0=Θ  ( 0=z in the plane) is by 6 dB lower 
than 0R . 

In /23/ a problem of somewhat another type is 
considered, but the method of its solution and the results 
obtained are similar. 

The source of finite dimensions is located on the rigid 
base. For decreasing its noise a semi-cylindrical shell is 
used. To simplify the solution of the problem it is taken 
that the source is part of the rigid semi-cylinder with its 
length e. The housing is located coaxially with the source 
and is unlimited. 

In the absence of the housing the sound pressure, 
which is formed by the radiator, is located as in [20], i.e. in 
the case of the source in the rigid screen. The field outside 
the housing is found analogously. The integrals obtained 
are estimated by the method of passage. 

The expression for sound insulation of the nth normal 
wave coincides with (2.11). The difference is only that the 
radial wave number µ  is replaced with Θcos2K , where 
Θ  – the angle between the plane 0=z  and the direction at 
the point of observance. All inferences and methods of 
computation, elaborated for determining sound insulation 
of the closed infinite cylindrical shell for normal waves, 
may supplement the problem under investigation. 

0ff
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Conclusions 
By means of cylindrical form constructions (housings) 

it is easier to isolate low frequencies, as Weight Law of 
construction surface is circumvented. In this case, the main 
role is played by rigidity of the construction.  

Sound insulation of flat constructions increases 
proportionally to the effected sound frequency. At high 
frequencies the maximum of sound insulation of flat 
constructions (except resonances) is achieved 

Meanwhile, sound insulation of cylindrical housings 
(constructions) at low frequencies is rather high and 
remains equal over the whole audible sound frequency 
range except resonance display. 

The foundation of slab (partition) sound insulation 
theory was laid by L.Cremer [21] what led to the 
development of present slab sound theory and practice.  

As it is seen from the given solutions, the slab sound 
insulation depends on the Mass Law and sound insulated 
by frequency. It should be mentioned that slab sound 
insulation greatly depends on sound speed cf as well as on 
propagation velocity ci of bending waves in a slab. The 
coincidence of the mentioned speeds leads to wave 
coincidence which is known as critical frequency. At these 
frequencies which are most common at the range of high 
frequency, sound insulation may be reduced to zero.  

The theory of cylindrical shells and housings was 
investigated later. 
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D. Gužas, R. Maskeliūnas 

Statybinių ir technologinių konstrukcijų garso izoliacijos ypatumai 

Reziumė 

Straipsnyje išanalizuoti statybinių ir technologinių orinio garso 
izoliacijai skirtų konstrukcijų ypatumai. Primenami garso izoliacijos 
dėsniai ir galimybės, kaip pakeisti nurodytas garso izoliacijos savybes. 
Trumpai paliesti plokščių konstrukcijų orinio garso izoliacijos gerinimo 
klausimai. Plačiau aptariami cilindrinių gaubtų garso izoliacijos skirtumai 
nuo plokščių (pertvarų) garso izoliacijos. Cilindrinių formų 
konstrukcijomis lengviau izoliuoti žemuosius dažnius, nes apeinamas 
konstrukcijos paviršiaus svorio dėsnis. Čia pagrindinį vaidmenį vaidina 
konstrukcijos standumas. 

Išvadoje pažymima, kad plokščių konstrukcijų garso izoliacija 
didėja proporcingai veikiamo garso dažniui. Esant aukštiems dažniams 
pasiekiamas plokščios konstrukcijos garso izoliacijos (išskyrus 
rezonansus) maksimumas. 

Tuo tarpu cilindrinių gaubtų (konstrukcijų) garso izoliacija, esant 
žemiems dažniams yra gana didelė ir išlieka tolygi visame girdimame 
garso dažnių diapazone, išskyrus rezonansinius efektus. 
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