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Peculiarities of sound insulation in building and technological constructions
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Introduction

The law of air sound insulation has been known since
old times. It defines the property of sound insulation which
depends upon the Mass Law, i.e., the heavier the
construction, the better air sound insulation. In calculation
of air sound insulation, the weight of m’ of this
construction, i.e., kg/m2 is taken into consideration. In the
course of time, the need of lighter partition constructions in
multistoried buildings arose. Acousticians in cooperation
with architects have been searching for ways to reduce the
weight of constructional partitions not decreasing the
properties of sound insulation. Thus, new theories of sound
insulation have been originated and experimentally
corroborated.

Two main types of sound insulation and their
properties are discussed in this article.

1. Some sound insulation of a single wall

The most common constructions used in buildings are
flat one-layer and multi-layer constructions. For its proper
purpose these constructions may be used for partitions —
wall constructions and slabs — floors and ceiling sound
insulation constructions.

A. Normal incidence mass law

When a plane wave which angular frequency in
o =27f is incident normally on an infinitely wide thin
wall some is reflected and some transmitted. Let the sound
pressures of the incident, reflected and transmitted sounds
be denoted by p;, p, and p;, respectively, as shown in
Fig. 1 (a). The wall is excited by the sound pressure
difference between the two surfaces of the wall and the
equation of motion is

dv
(pi +py)=p=m— (1)
where m is the surface mass of the wall, and v is its

velocity.
In the case of simple harmonic motion, d/df —j @ can be
used

(pi+p,)-p; =P=jomy

2
Jjom="— (3)
v
This is the impedance per unit area of the wall. Since it is
assumed that the particle velocity of the air adjacent to
both wall surfaces is equal to
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Fig. 1. (a) Sound insulation of single wall and (b) its analogous circuit
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Pi_y,Jom (5)
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Therefore, the transmission loss is

2
= 1010g10 1+ (w—m]
2pc

(6)

2
Pi

RO = lOlOglO l = 1010g10
T t

Generally, (a)m)2 >> (2pc)2 ; hence

2
Ry ~ 1o1og10(%j =20logy fm—-43dB  (7)

which is proportional both to frequency and the surface
mass m of the wall. This is called the 'mass law' for
airborne sound insulation. Doubling the weight of the wall
or the frequency gives an increase of 6 dB in ~Q— This wall
motion may be expressed by an analogous electrical circuit
as shown in Fig. 1(b). In this circuit, if no wall exists, it
becomes as shown in Fig. 2 (a) and at the wall surface the
sound pressure is p; . When the wall is completely rigid in

which the velocity becomes zero, the current is zero,



Fig. 2. Analogous circuit: (a) Open air and (b) Rigid wall

thus the circuit is open as shown in Fig.2 (b), and at the
wall surfaces
Pitpr=2p; Pr="Di

In Fig. 1 (b), at the junction I of the circuit, the
impedances to the left and the right are denoted by Z; and
Z, respectively. Since there is no internal absorption, the
transmission coefficient t can be expressed by Eq. 1,
where Z; = pc, Z, = jom+ pc, then Eq. 6 is obtained.

B. Random incidence mass law

When the incident angle is €, Eq. 8 can be derived as

follows:
2
[ j - ®

If we are calculating the average value in the range
6 =0~90° Eq. 9 is obtained as the 'random incidence
mass law'

wm cos 0

Re 21010g10L21010g10 1+ 2pc

To

Rrandom:Rofl010g10(0'23/R0)~ (9)

However, in an actual sound field using the range of
# =0~78° is more realistic and the following
approximate formula is obtained:

Rpe=Ry -5dB, (1 0)

which is recognised as closer to reality and called the
“field incidence mass law”.

2. Sound insulation of cylindrical housings

Industrial development and application of new
technologies made it necessary to apply cylindrical shells
and housings for noise reduction. The literature indicated
[21] presents the application of different cylindrical
housings and selection of their shapes. We shall discuss the
sound insulation properties of universal cylindrical
housings.

Whenever a question concerning sound-insulation of
cylindrical housings comes forth, it is at once followed by
another: what is the difference between a cylindrical
housing and a cylindrical shell, sound-insulation of which
has been studied by a good variety of authors? This
question is not so simple, though some demarcation
between them is possible.

When one speaks about housings, he has in mind
certain sources, the noise of which is hindering. This noise
may be considerably diminished, if the sources are
surrounded by some sound insulation device — and that is a
housing. We speak about sound insulation of a cylindrical
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shell in cases these sources cannot exist without a shell.
For example, pressure fluctuations that are due to the fan in
a ventilating system or the booster in a gas piping. Further
on we shall keep to that position.

The first attempts to calculate and apply cylindrical
housings were linked with the noise of extensive pipings,
which sometimes reaches considerable values. Thus, for
example, the noise of gas pipings from outside reaches
110-115dB. Computations [1] have shown that maximum
noise is determined by discrete frequencies, linked to the
blade frequency of the booster f;, where n is the rotation
frequency and z is the quantity of the booster blades, and
with its harmonics.

Since the frequency is commonly below the first
critical frequency of the piping and the damping of
vibrations along it constituted only some decibels per S0m,
it was clear that noise is caused by zero-order normal
("almost" plane) wave. Therefore quite a number of works
appeared that were designed for elaboration of calculation
methods and designing of the housing for reducing its
noise [1,2,3,4,5,6]. In practice, this problem occurs rather
frequently, thus we shall make more detail investigation
into it. The essence of the problem is that during axially
symmetric vibrations inside the piping the sound pressure
can be written in the form of

5\ ik
p1=znoJoOz %’ g, 2.1)
where J, Bessel zero-order function, x and

y = \/klz - yz radial and axial wave numbers, kj =@ /¢,

wave numbers in the medium inside the piping, and p;q is
a complex amplitude of vibrations.

If we assume that impedance of the housing for normal
axially symmetric vibrations is equal Z; [13], while the
impedance of radiation into the environment is Z,;3;
[14,15], (then we shall come to dispersion control [14] in
the form of impedance

" Jo(ua) .
Ji(wa) H| ) 1)

Here, H((Jl) and Hl(l) are the Hankel functions of the first

kind of the zero and first order, a is the radius of the
piping, and Zjg =ipjo/py, Zyg =ipa0/uy, py and py is
the density of mediums inside and outside the piping.
Radial numbers in mediums outside and inside the piping
arc linked together by the correlation

H(l)(
7 #2“)
(()1

:ZO +Zu31:ZO +ZZO (22)

15 =3 ki + i 2.3)

where k, = ®/c, —the wave number in the environment.

The roots of Eq. 2.2 determine the permissible normal
waves inside the piping, which may exist. For the cases of
similar and different mediums inside and outside at n = 0
they are calculated in works [14, 15].

Among them there is a zero root . It differs from
the others since it is complex, very small according to the
modules, ie. |ugpa|<<1 and its imaginary part
significantly exceeds the real one. With respect to this

‘J 0 (uz )‘ ~1 and (1) we can approximately write
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p1 = prol™ (2.4)

In other words, this root corresponds to the "almost"
plane wave, which propagates along z-axis of the piping.
In the first approximation, which is valid when

(2.5)
Here

(2.6)

ZO = la)l’l’l(—

2
/7 fo
where m=ph, p and h are the density of the material

and thickness of the shell, f,, =c, /2na is the longitudinal

resonance frequency of the shell, on which the length of
longitudinal wave is placed along the circumference of the
shell, f is the frequency of coincidence, at which length

of a flexural wave in the shell A, equals to the wave
length in the medium. It should be noted that z; never
turns into zero, if 21, > f;.

Substituting Eq. 2.6 into Eq. 2.5 we shall obtain

Loo =1 ’ . 2.7
e
R
Since g is imaginary, J (i|y00|): [O(I ), where

1y 1s the modified Bessel's function. One more peculiarity
of that wave is revealed. If the mediums inside and outside
the shell are the same, then 1, =ty = i| ,u00| . In the

unbounded space the outside wave can be written in the

form
ﬂk
pz—onH ( )3 £t
2p20 l,/kl +Ho0|z
—ky ﬂ00|2)€ ‘
where p,, is the pressure amplitude, ky is the

McDonald's function (modified Hankel's function). It
exponentially coincides with the increase in r. Thus, this
wave does not radiate the sound outside and can spread
along the pipe for extensive distances. The same will be
also observed in the case the sound velocity in the internal

medium ¢; will be less than that in the external medium
¢p. Another picture will be observed when c¢; >¢;. In

accordance with Eq. 2.3

2 2
2_@ 2 2
Hy =5 1= |~ Hoo-
) q
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HooC2

2 b
2 1—%
9

the frequencies

Beginning with the frequency f;, =

becomes valid. Practically at

H2
f> (2+3)f00, ,uzz ~ k22 —k12 and from the pipe the wave
will spread at the angle

© ~arcsin(c, /¢ ) (2.8)
to 7 axis.

Analogous situation occurs in the case of similar
mediums, if the medium inside moves. Then the velocity
of sound propagation in the direction of movement will be
greater than the sound velocity in the motionless medium.

In [2, 6] the problem of sound insulation of the zero
wave with the help of a sound-measuring housing,
represented in the form of the coaxially arranged
cylindrical shell, is considered in detail. The piping of
radius and the housing of radius are considered infinitely
extended in length. Sound pressure

pi(rz)=

which is created by the piping without the housing at some
point (r,z), is obtained by a usual method by satisfying
the boundary conditions when r=a;, expressing the
equation of the radial velocities of the piping v and the
medium.

When determining the sound pressure ps (r, z), which
is created by the piping with the housing, the following
assumptions were made:

1. A thin housing, i.e. radial oscillation velocities of its
surfaces inside and outside are similar.

2. Radial velocity of the piping v, does not change if

the housing is installed.
Sound pressures below and behind the housing are

written in the form
L 1“62 uz z

pz(r,z): AH( )(,uzr +BH
z)= P30H Nzl EReh

The unknown amplitudes 4, B and p; are defined by
the boundary conditions in the piping (the equation of the
radial velocity of the medium of the velocity v, ) and in

L (2.9

palr,

the housing (the equation of the radial velocities and the
equation of motion for a cylindrical shell in the form of the
impedance). The sound insulation R is defined in respect to
pressure amplitudes at some point (7, z), created by the
piping with and without the housing:

12

R=101g23
P3

(2.10)

In Eq. 2.6 a case when mediums inside and outside the
housing are similar, i.e. k) =k3 and p, =p3, py =p3 is
presented. It was obtained that



2
_Zos2® 1592 1 0) 0 Vi P )
4py0

R=201g]l
[H()(#zaz) 1()( 2a) ~1l,
1P s )

where Z,;, — the impedance of the shell (housing) for

(2.11)

axially symmetric vibrations. It should be noted that the
expression Eq. 2.11 holds true for any normal axially
symmetric waves, not only for the zero wave. Everything
is defined by selecting the corresponding values of the
radial wave number p, and by correctly expressing the

impedance Zj, for a normal wave under consideration.

The work [3] gives a description of a practical method for
calculating sound insulation of the housing of the zero
wave. Diagrams of the amplitudes and phases of the
Hankel function, significantly simplifying computation, are
provided.
It is shown that minimum sound insulation is observed
in two cases:
1. The impedance of the shell approaches zero in cases
of frequencies close to the critical frequency
fn=c,/2na,, at which one longitudinal wave-

length A, =c¢c,/f, be the

circumference of the housing and to the coincidence
frequency f{, on which the flexural wavelength in

will equal to

the housing equals the wavelength in the medium
Ae -
On the resonances of the medium, at the clearance
between the piping and the housing.

Since the dimensions of the clearance are not large,
these resonance frequencies, as a rule, lie higher than the
frequency f,,.

2.

Here is presented a typical curve of dependence R
upon the frequency, calculated for the aluminium housing
h 0,1 cm in thickness for the piping with radius
a; =36 cm and the clearance between the piping and the

housing d =5 cm (see Fig. 2.1).
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Fig. 2.1. Sound insulation frequency dependence of a housing

In [7] a case is presented when the media inside and
outside the housing are different. It is of importance for
practice since the application of the soundproofing
materials at the clearance under the housing may greatly
increase sound insulation of the housing at the frequencies
where it has minimum values. It has been shown that at the

27

ISSN 1392-2114 ULTRAGARSAS, Nr.1(46). 2003.

optimum clearance d = 5 cm a simplified equation may be
used for assessing the minimum sound insulation at the
resonance frequencies:

Ryin = Rgox +8,78,4d

where B, is the attenuation coefficient of the sound-

(2.12)

absorbing material.

In [8, 9] computation data of frequency dependencies
of sound insulation R of steel and aluminium housings at
different clearances d between the piping and the housing
are provided. It follows that optimum values d are from 5
to 6 cm, and the optimum value of housing thickness
h=1-1,5 mm.

In [12] another case is presented which is of practical
interest for noise decreasing with the help of the housing,
when the extended piping performs beam-like vibrations.
They occur frequently, for example, at vibrations of water-
supply pipes. The computation is based on an approximate
equation of housing oscillations from [17], which presents
an equation of flexural vibrations of the beam with a
correction for rotational inertia. In the same manner as
previously an expression for R type (Eq. 2.11) is obtained.
All conclusions earlier also hold true in this case.
Minimums of sound insulation are observed at the
coincidence angles of the housing and at the resonance
frequencies of the medium at the clearance between the
piping and the housing.

Analogous expressions (Eq. 2.11) for sound insulation
are also obtained for other normal waves with azimuthal
numbers not equal to zero. In work [10] sound insulation
for different n can be written in the form

v 20, . )
1- w Hr(zl)(/l ap )Hr(zz)(ﬂaz)
wp

R=201g
H;(ql)(ﬂ ) )Hr(zz)(ﬂal) _1
H(z)(ﬂaz)ﬂ( )

(2.13)

—

{ n n )(W

where H ,(,1) and H ,(12) are the Hankel functions of n-th
order of first and second kind, a point above the Hankel
functions means an argument derivative. Minimum sound
insulation is obtained on the same conditions as for a zero
wave: at the small values of the impedance Z ;, and at

the appearance sound waves between the piping and the
housing.

In [11] an expression is derived for sound insulation of
cylindrical shells when excitation and sound pressure
depend only on 7 and ¢ (with no wave propagation along

z-axis). As to its form, it almost doesn't differ from Eq.2.11
and Eq. 2.13. The impedance of the housing used in it is
written in the form [16]"

(n+1) aznzﬂ n ﬂ+n p
Ja)y(n —k2a )

kf‘ag - k22a

Zoga = ,(2.14)

Note. In these cases when a temporary factor is used an imaginary unit
is written as.
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where k, =®/c, is the wave number of longitudinal
vibrations in the material of the shell, [3=h2/ Ra%,

Y= a% / Eh(l ~c? ) E and o are the Young's modulus and

Poisson's ratio of the material. Computation curves of
sound insulation of the brass shell, 1 mm in thickness,
radius a, =7,5cm (an inner pipe has radius a; =5 cm)
for normal waves with n = 2, 3, 4, 5 are provided. To
confirm computations measurements of brass pipes, the
ends of which were produced soundproof, were conducted
in the room with small reflections. The experiment showed
that at critical frequencies a decrease in a sound insulation
up to — 10 dB was observed (i.e. sound on these
frequencies intensifies), as it was predicted by theory. In
addition, it was noticed that critical frequencies are shifted
to the direction of the higher frequencies.

In the above works infinite cylindrical shells were
considered. For practical purposes it will be of special
interest to study the effect of the limited dimensions both
of the sources and of the housings on sound insulation.
Lately quite a number of works on these problems
appeared in the literature.

In [18] a problem on sound insulation of the
cylindrical shell of length / from the extended sound
sources is being solved. The source is represented in the
form of a cylinder with radius @ and is located normally
to the two rigid parallel walls. It is considered that
arbitrary distribution of radial velocities are present on its
surface. The housing of radius a; is located coaxially with
the sound source. To simplify the solution of the problem
boundary conditions of securing the source and the
housing on the butt ends are thus selected that
eigenfunctions along z-axis will be the same in the medium
and in shells, i.e. \Vm(z): cosk,,z, where k,, =mn/l and
m=0,1,... — the integral number. Then the pressure
expansion is possible in the medium inside and outside the
housing, as well as that of the radial velocities of the
source and the housing in series according to \Vm(Z) and,
having satisfied boundary conditions, it is possible to
obtain the unknown quantities of pressure amplitudes.

Sound insulation of the shell for normal waves in that case
is written as

R :201g1_”“k(k§ _kV%l)'Zmn AV,
4pre AM(ag)  (2.15)
19072y 120 )|

Here, k =w/c, — the wave number in the medium,

Ky :\lkzz —k,%, — the radial wave in the medium,

arguments of derived Hankel functions Hn and Hn (ao)
are equal correspondingly (k,mak)and (krmao). The

impedance of the shell for a normal wave (m, n) is written
as

28

k,i +
¢ 1
. k
Zyn =—iomg|1- T
k4 knan
5 (2.16)
2 21,2 2 2 n
(km _kt ka _kn )_ kn )
9k
2 2
e + = kG || e+~ K7
A 9
where k=w/c¢, ko =w/cy, k,=0o/c,,

k4 2'\4 w2m0 /B

— the wave number of flexural vibrations in the plate,
B=Er* /12— 0?)

— flexural rigidity of the plate, from which the shell is

made, £ and 6 — Young's modulus and Poisson's ratio of

the material, ¢;, ¢, and ¢y — the velocities of shear and

longitudinal wave propagation (in the rod and in the plate,
correspondingly). The velocities ¢, and ¢, are linked

with the relation c,z, = cg (1 - 0'2).

The relation (2.15) as to its type is fully identical with
(2.11) and (2.13). The difference consists only in different
representation of radial and axial wave numbers in the
expressions for and the impedances of the shells. As a
result, the previously drawn conclusions are also valid
here: minimums of sound insulation are observed if the
impedance Z,,,, =0 and at the resonance’s of the medium

layer under the housing. At frequencies in which
(ki —k,% ) does not lead to R,,,, =0. The value of sound

insulation at these frequencies f,, = mc, /2l [/ equals

4 2n
Zntl 1—((’}
aj

Ry, =201g o
20 |

1+i

. (.17

i.e. determined by the value Z,,,.

Note should be taken of the peculiarity R in

mn ’
addition to a wave with m = 0, which propagates along
r-axis at all frequencies, each normal wave has a critical
frequency f,,, below which there is no propagation of the

m-th wave. It attenuates exponentially along r. Sound
insulation then has great values and no minimums, linked
with the medium resonance’s at the clearance under the
housing. Before the frequency f; =c¢,/2/ only a wave

with m = 0 propagates. If the parameters of the housing are
selected such that it will possess the good sound insulation
of a zero wave, then the housing will decrease effectively
the noise at low frequencies.



In the present work sound insulation using various
methods for excitation is considered, as well as the
computation R results for the shell with /=3m,
a, =0,3m and A=2 mm (Fig. 2.2) when n = 0 and a
small radius of the source a; as compared with the

wavelength in the air are provided. Here, along abscissa
axis the unlimited frequency o = f'/ f is plotted, where

Jo=cp/2na; . The diagram shows that curves differ

significantly only in the area of the critical frequency.
Higher they merge together.

In /19/ an analogous problem is considered, but the
sound source is located outside the casing, while the point
at which the noise decreases is inside. The solution is
found the same as in [18], only for transferring the
beginning of the coordinates the theorem of addition for
cylindrical functions is used.

R, dB

100

&0

ANV

3

20

o K] 10 1 20 25 0 4 45

Fig. 2.2. Sound insulation frequency characteristic of the first three
modes

The general expressions for sound insulation using
various methods of excitation are obtained. It was shown
that R depends on the position of the observation point. If
it is located on the axis of the housing, then at low
frequencies at f < f] =c,/2ma; sound insulation from
the external and internal sources is similar.

This conclusion also holds true at the concentrated
excitation, when a small surface of the radiator emits and
its radius q is small.

In [20] the problem on sound insulation, restricted by
the rigid shell, is solved. The radiator with radius a in it

represents part of the infinite rigid cylinder of length e, on
which an arbitrary distribution of radial velocities is preset.
The housing represents the elastic shell of length e, which
is also part of the infinite rigid cylinder of radius a; . The

medium, characterized by the plane p, and sound velocity
¢, , 1s inside and outside the housing, The side walls at the
clearance between the radiator and the housing at z =0
and z=e are considered rigid, in consequence of which
eigenfunctions v, (z): cosk,,z, where k,, =mn/e and
m=0,1,... — the integral number. As in /18, 19/ boundary
conditions of securing the shell and the radiator at z=0
and z=e are such that the eigenfunctions of radial
displacement of the housing and the radiator are also

111
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y m(z) Making use of plotting along \ym(z) of the radial
velocities of the radiator V|, the housing V) and the
sound field at the clearance Pr(r, o, z), it is possible to

find the link between the amplitudes of normal waves
Vkmn and Vomn .

Sound pressures, formed by the radiator and the
housing in the unlimited space are written in the form of

Fourier integrals:
o (k)H,gl)(w/kzz K2 r)eikzdz

Po = Z e ]3
D (k)H,(,l)(\/ k3 k2 rjeikzdz

From the boundary conditions at r=a( and r=aqy;
the relation between pg(k), (k) and Vp,, of the
radiator is determined. Integrals in the expressions p, and
Py are assessed by the method of passage.

As a result expressions for sound insulation at
arbitrary excitation are obtained. Radiators in the form of
the pulsating cylinder and the concentrated source of the
small dimension were considered separately.

It is shown that in the case of the pulsating cylinder
R =Ry +AR, where Ry — the known sound insulation of

the infinite cylindrical shell, which performs the radial
vibrations. The second part AR contains the dependence
on the angle ® between the plane z =0 and the direction
at the point of observance. A diagram is provided for
computing.

In the case of the concentrated excitation sound
insulation at ® =0 (z=01in the plane) is by 6 dB lower
than Ry .

In /23/ a problem of somewhat another type is
considered, but the method of its solution and the results
obtained are similar.

The source of finite dimensions is located on the rigid
base. For decreasing its noise a semi-cylindrical shell is
used. To simplify the solution of the problem it is taken
that the source is part of the rigid semi-cylinder with its
length e. The housing is located coaxially with the source
and is unlimited.

In the absence of the housing the sound pressure,
which is formed by the radiator, is located as in [20], i.e. in
the case of the source in the rigid screen. The field outside
the housing is found analogously. The integrals obtained
are estimated by the method of passage.

The expression for sound insulation of the n™ normal
wave coincides with (2.11). The difference is only that the
radial wave number p is replaced with K, cos®, where

® — the angle between the plane z =0 and the direction at
the point of observance. All inferences and methods of
computation, elaborated for determining sound insulation
of the closed infinite cylindrical shell for normal waves,
may supplement the problem under investigation.
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Conclusions

By means of cylindrical form constructions (housings)
it is easier to isolate low frequencies, as Weight Law of
construction surface is circumvented. In this case, the main
role is played by rigidity of the construction.

Sound insulation of flat constructions increases
proportionally to the effected sound frequency. At high
frequencies the maximum of sound insulation of flat
constructions (except resonances) is achieved

Meanwhile, sound insulation of cylindrical housings
(constructions) at low frequencies is rather high and
remains equal over the whole audible sound frequency
range except resonance display.

The foundation of slab (partition) sound insulation
theory was laid by L.Cremer [21] what led to the
development of present slab sound theory and practice.

As it is seen from the given solutions, the slab sound
insulation depends on the Mass Law and sound insulated
by frequency. It should be mentioned that slab sound
insulation greatly depends on sound speed cf as well as on
propagation velocity ci of bending waves in a slab. The
coincidence of the mentioned speeds leads to wave
coincidence which is known as critical frequency. At these
frequencies which are most common at the range of high
frequency, sound insulation may be reduced to zero.

The theory of cylindrical shells and housings was
investigated later.
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D. Guzas, R. Maskelitinas
Statybiniy ir technologiniy konstrukcijy garso izoliacijos ypatumai
Reziumée

Straipsnyje iSanalizuoti statybiniy ir technologiniy orinio garso
izoliacijai skirty konstrukcijuy ypatumai. Primenami garso izoliacijos
désniai ir galimybés, kaip pakeisti nurodytas garso izoliacijos savybes.
Trumpai paliesti ploksc¢iy konstrukcijy orinio garso izoliacijos gerinimo
klausimai. Pla¢iau aptariami cilindriniy gaubty garso izoliacijos skirtumai
nuo plok§¢iy (pertvary) garso izoliacijos. Cilindriniy formy
konstrukcijomis lengviau izoliuoti Zemuosius daznius, nes apeinamas
konstrukcijos pavirdiaus svorio désnis. Cia pagrindinj vaidmen] vaidina
konstrukcijos standumas.

ISvadoje pazymima, kad ploks¢iy konstrukciju garso izoliacija
didéja proporcingai veikiamo garso dazniui. Esant auk$tiems dazniams
pasiekiamas ploks¢ios konstrukcijos garso izoliacijos (iSskyrus
rezonansus) maksimumas.

Tuo tarpu cilindriniy gaubty (konstrukcijy) garso izoliacija, esant
zemiems dazniams yra gana didelé ir iSlieka tolygi visame girdimame
garso dazniy diapazone, i§skyrus rezonansinius efektus.
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