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Introduction 
Modern ultrasonic and radar measurement systems are 

widely used in the field of non-destructive testing for a 
long time. The limitation of a currently available ultrasonic 
instruments hardly lies on the property of hardware but it 
may lie on the lack of sufficient signal processing 
techniques [1]. At present, the ultrasonic A-scan type 
instruments are most commonly used. It is believed that 
the received A-scan signal may carry a lot of information 
on material properties and defects, but information appears 
in various guises of noise, which is to be deciphered 
completely. A lot of research has been done on ultrasonic 
signal processing and still now is going on in search for 
more reliable and versatile signal processing techniques [2-
6]. Generally, the flaw signals measured in ultrasonic NDT 
include the effects of the measurement system and are 
corrupted by different kind of noise. The highly complex 
interaction between the defect geometry and the back-
scattered ultrasonic wave inside the test piece may not be 
assumed as a linear process. So, the signal processing 
techniques which require apriory knowledge of noise 
statistics, are subject to fail in many situations. Therefore 
the approach of signal processing should be involving the 
noisy signal itself in constructing the signal processing 
method. 

Signal processing in ultrasonic NDT systems 
Let us analyze a real time system in which a 

transmitter and a receiver are located at predetermined 
points. Several M-sequences (usually the Barker code), 
modulated by ultrasonic wave are used as the transmitted 
signal and receiver receives signals reflected from the 
target. Such a system is depicted in Fig. 1. 

This system measures the thickness of moving object 
A. The reference signal refx  consisting of a certain coded 

sequence is emitted by the ultrasonic transmitter at the time 
moment 0t . The propagating signal partially reflects from 
the front side of object A: 

 ( ) ( )111 ttxkty ref ∆−= . (1) 

The other part of the emitted reference signal 

refx reflects from the rear side of object A: 

 ( ) ( )212 ttxkty ref ∆−= , (2) 

where: 1k and 2k  are the coefficients depending on a 
distance to the object, environment and object properties, 

1t∆  and 2t∆  are the delay times directly proportional to 
the distance d  and the thickness of object A: 

 envcdt ⋅=∆ 1 , (3) 
 objenv cdcdt ⋅+⋅=∆ 12  (4) 
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Fig. 1. Ultrasonic NDT system 

Finally in the receiver we get the signal y : 
 ( ) ( ) ( )2211 ttxkttxkty refref ∆−+∆−= . (5) 
The task of signal processing is to determine the time 

instances 1t∆ and 2t∆ . Then values of control signals are 
calculated and transmitted to actuators. The signal 
processing time is restricted by properties of a 
technological process and the velocity of the object A. For 
determination of the time instances 1t∆  and 2t∆  usually it 
is used principle of obtaining the impulse response by a 
correlation process. Let’s consider refx  to be the 
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transmitted sequence, ( )ty  to be the received sequence and 
( )th  to be the impulse response of the composite system, 

which includes the test piece, the transceiver system and 
their associated electronics. The scattered ultrasound that is 
picked up by the receiver and the additive system noise 
( )tn  constitute the received signal ( )ty . The signal of the 

output of the correlation filter can be represented by 
 ( ) ( ) ( ) ( ) ( )[ ]dttthtxtx εττψ +∗+= ∫ . (6) 

If peaks corresponding to reflections from the targets 
were clearly identified in the cross correlation function 
(CCF), it would be easy to determine the time instances 

1t∆  and 2t∆ . In practice, however, it quite difficult to 
identify them because of suspicious peaks in the CCF due 
to a noise from the surrounding medium and it is essential 
to cancel out effects of noise. In order to reduce the effects 
of a noise during transmission and reception some 
measures have to be taken. 

Band modification by moving average 
Data processing is performed on both of the sampled 

received signals and the original M-sequence and the 
sampling frequency is such that there are j samples per unit 
pulse of the M-sequence. So, the expected peak on the 
CCF is supposed to consist of 2j samples. In order to 
minimize spurious peaks, widths of which are less than 2j 
samples, the sampled data are smoothed by performing the 
moving average of the data sequence: 

 [ ] [ ] [ ] [ ]11 321 +++−= nycnycnycny , (7) 
 1321 =++ ccc . (8) 
This is equivalent to application of the Hanning 

spectral window. This method considerably minimizes the 
noise peaks of comparatively small width while keeping 
the expected peaks intact. 

Averaging 

The system emits the reference signal refx  
periodically 

 [ ] [ ]lNnxnx refref += , (9) 
where N is the period of the reference signal. If the 
position of the object A during l periods changes a little, it 
is possible to average input signal l times: 

 [ ] [ ]∑
−

=

−=
1

0

1 l

l
lNny

l
ny . (10) 

The noise level is reduced l  times. This is effective, 
but time wasting method and is not used in the case of 
signal processing time restrictions in real time systems. 
This method does not allow eliminating peaks caused by 
surrounding environment. 

Noise cancellation by subtraction 
Some coherent peaks, additive to the expected peaks, 

appear on the CCF, which are confusing in regard to the 
clear distinction of a target. This is due to the surrounding 
structure or due to the effect of limitations of the 
measuring system. These clutter peaks appear irrespective 

of presence of any target. To perform the subtraction, first 
of all the data are collected from the test object without 
presence of any the target. Another data are taken with the 
presence of target. Coherent peaks are cancelled by taking 
the difference between the CCF of second data and that of 
the first data. This helps distinguishing the peaks 
corresponding to the reflections from the newly developed 
targets by removing the coherent noise of the system. 

Inverse filtering 
Passing the signal through an inverse filter can 

significantly reduce a random and clutter type noise. A 
major part of the long CCF is to be assumed as a noise 
except the portion corresponding to the direct signal and 
the signal reflected from the target. The inverse filtering 
operation [7-9] of a signal is described as: 

 [ ] [ ] [ ]knyanyny
P

k
k −−= ∑

=1

ˆ , (11) 

where [ ]nŷ  is the output of the filter and P is prediction or 
the model order. The inverse filter is designed calculating 
the coefficients { }ka  based on noisy data. Coefficients 
{ }ka  are obtained by solving the equation [10]: 

 [ ] [ ]iRkiRa
P

k
k −=−∑

=1
, (12) 

where [ ]iR  is the autocorrelation function defined by: 

 [ ] [ ] [ ]ikykyiR
N

k
+= ∑

−

=

1

1
. (13) 

This autocorrelation function is constructed with N 
samples of data from a suitable portion of the received 
signal, which presumably contains no expected peak. Such 
a filter is depicted in Fig. 2 
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Fig. 2. Inverse filter 

This filter attempts to remove the predictable part of 
the signal and produce an output [ ]nŷ , which is 
completely unpredictable to the filter. 

Wavelet transform based noise reduction 
During the last time the wavelets have become a 

popular de-noising (or noise reduction) tool [11]. Donoho 
and Johnston [12] showed that this method has statistical 
optimality properties. Many algorithms define a criterion 
to divide wavelet transform coefficients into two groups. 
The first group contains the coefficients dominated by a 
noise, while other coefficients are rather clean. These 
algorithms eliminate all wavelet coefficients below a 
certain threshold, because these coefficients are dominated 
by a noise.  
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Let’s consider the following model of the received 
discrete noisy signal 

 ][][][ nnynz ε+= , Ni ,...,1= , (14) 

or in a vector notation: 
 ε yz += ., (15) 

To reconstruct the original data, a wavelet 
representation is used. We use simple non-redundant 
orthogonal, discrete wavelet transforms. An orthogonal 
matrix W  can be used to represent this operation. We 
consider the following transform: 

 yWv ⋅= , (16) 
 εWω ⋅= , 
 ωvzWw +=⋅= . 

These transforms localize the most important spatial 
and frequencies characteristics of a regular signal in a 
limited number of wavelet coefficients. On the other hand, 
it is easy to prove that an orthogonal transform of a 
stationary, white noise results in a stationary white noise. 
This means that the expected noise energy is the same in 
all coefficients. If this energy is not to large, the noise has 
a relatively small influence on the important large regular 
signal coefficients. These observations suggest replacing 
the small coefficients by zero, because they are dominated 
by noise and carry only a small amount of information. 
The thresholding operations can be represented as 

 ii wDw ⋅= δδ , (17) 

where 
 [ ]iiddiagD =δ . (18) 

There are known two threshold methods – hard 
threshold and soft threshold (or shrinking function) 
[13-15]. 

In the case of the hard threshold the entries of the 
matrix δD  are 
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In the case of soft threshold the entries of the matrix 
δD  are 
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These threshold functions are shown in Fig. 3. A 
wavelet coefficient w  between δ−  and δ  is set to zero, 
while others have the same value in the case of the hard 
threshold, or are shrunk in an absolute value in the case of 
the soft threshold. 

A natural question arising from this procedure is how 
to chose the threshold. If δy  is the result of applying 
threshold procedure to the wavelet coefficients of signal 
y , and fyδ −=δε  is the noise of this result, then an 

often used criterion to measure the quality of this result is 
its signal to noise ratio ( )(δSNR ): 
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Fig. 3. Hard thresholding (a) and soft thresholding (b) functions 

An optimal choice of δ  should maximize )(δSNR . 
This is equivalent to minimizing the mean squared error 
R : 
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∑
. (22) 

Because the wavelet transform is orthogonal, we can 
also compute R  from the wavelet coefficients as: 

 
n

R
2

)( δωδ = . (23) 

δδ εω W=  is the noise after operation in the wavelet 
domain. 

However, because f  is unknown, the function δR  is 
not computable and hence it cannot be used to find optimal 
δ . For automatic spline smoothing it was suggested to 
adapt general cross validation (GCV). Our aim is to 
minimize error function based on an unknown exact signal. 
We therefore try to find a good compromise between a 
goodness of fit and smoothness. We assume that the 
original signal is regular to some extend, which means that 
the value if  can be approximated by an linear GCV 
combination of its neighbors. So, by considering iyδ  a 
combination of jf , not depending on if  itself, we can 
eliminate the noise in this particular component. Since we 
replace it by a weighted average of its neighbors, the noise 
in these components is smoothed, and so we end up with a 
relatively clean, noise-independent value. Applied to the 
wavelet procedure this GCV should be a function of a 
threshold value using only known data and having 
approximately the same minimum as the residual function 

)(δR . 
 



ISSN 1392-2114 ULTRAGARSAS, Nr.1(46). 2003. 

 34

We have a definition of general cross validation: 
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where 
j

i
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∂
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Note that if ji ≠ , then 0=ijd . For ji =  we have 
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Thus, if ( )'DTr  is the trace of 'D , 

 ( ) { }.0#' ≠= iiDTr δω  (26) 

The results of applying the threshold procedure on the 
reflected signal are depicted in Fig. 4. In this case only a 
fragment of the Barker code is used for formatting M-
sequence. 
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Fig. 4. The reflected signal: a - without applying de-noising 
procedure, b - after applying hard thresold procedure, c - after 
applying soft threshold procedure 

Wavelet transform based signal processing 
method for ultrasonic NDT system 

In order to reduce computations, the  reference signal 
refx  and the reflected signal δy  (signal y  after applying 

thresholding procedure) are transformed: 

 
2

)sgn(1~ 1δ−+
=

ref
ref

x
x , 

 
2

)sgn(1~ 1δδ −+
=

y
y . (27) 

After applying this transform we get digital signals 
refx~  and y~  with logical values “0” and “1”. This 

transform is possible because the most important 
information is the pulse widths of M-sequence. Results of 
applying procedure (27) are shown in Fig. 5 
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Fig. 5. The transformed reflected signal: a - the reflected signal 
without noise, b - the reflected noisy signal after applying hard 
threshold procedure, c - the reflected noisy signal after 
applying sof threshold procedure 

The soft threshold procedure allows achieving a better 
visual quality, than the hard threshold procedure as shown 
in Fig.4. But, when the noise level is high, applying the 
soft thresholding procedure more distorts pulse widths of 
the transformed signal y~  as shown in Fig.5. 

The results of these transforms depend on the 
threshold 1δ  value, which optimal value varies in 
accordance to the noise level ε . When the threshold 1δ  is 
low, an additional pulses emerge in the transformed signal 
y~ , as shown in Fig. 5b. When the threshold value is high, 

the pulse widths of the transformed signal y~  are shrinking 
and pulses may be distorted as shown in Fig. 5c. The 
optimal threshold 1δ  value was defined by computing 
maximum value of the correlation function: 
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at different threshold 1δ  values. 
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The best results were achieved when δδ 4.11 = , where 
δ  is the threshold value defined by computing GCV 
function. Note that GCV function computation in this case 
does not require any floating-point operation and may be 
computed by a hardware. These computations may be 
simplified in the case when a fixed M-sequence is used. 

Such a procedure may be used for recovering a 
distance to the object from noisy data. It possesses three 
steps: 
1) apply the interval adapted pyramidal algorithm of 

Cohen, Daubechies, Jawerth and Vial [11] to the 
measured data, obtaining empirical wavelet 
coefficients iw ; 

2) apply the soft threshold nonlinearity 
+−= )(sgn δδ iii www  coordinatwise to the empirical 

wavelet coefficients with the specially chosen 
threshold δ ; 

3) invert the pyramid filtering recovering 
1,...,1,0  ),( −= nity iδ ; 

4) apply the transform (xx) to the reference signal refx  

and de-noised data δy ; 
5) detect the argument of correlation function maximum 

value. 
For a fast wavelet transform we need FN 22 flops, 

where F  is the number of filter coefficients. For 4=F , 
we have N16 flops. To reconstruct the signal after 
operation with the optimal threshold δ  we need N16  
flops.  

Computation of )(δGCV  can be performed 
completely in the wavelet domain. Because )(δGCV is an 
approximation itself it is not useful to compute its 
minimum very precisely. Moreover, in most cases this is 
not necessary to the curve of )(δR  in the neighborhood of 
its minimum. A relative accuracy of 10-3 is enough. Using 
a classic minimization procedure (such as Fibonacci) this 
requires approximately 15 function evaluations. The 
denominator )(DTrN ′−  counts the number of coefficients 
that are set to zero. This does not require any floating-point 
operation. Computation of the nominator can be done with 

N2  floating point operations. So 15 function evaluations 
lead to some N30  floating-point operations. 

Computation of the signal y~  can be done with N  
floating point operations. 

Computation of the correlation function does not 
require any floating-point operation. 

So execution of the suggested signal processing 
algorithm leads to 63N operations. Execution of a classical 
signal processing algorithm leads to ( )NPL 2+ operations, 
where N is the number of samples, L is the length of 
M-sequence, P is the model order of the inverse filter. The 
suggested algorithm requires less floating-point operations, 
when ( ) 632 >+ PL . 

Conclusions 
Generally the flaw signals measured in ultrasonic NDT 

systems are spoiled by different kind of a noise. Therefore, 

the approach of signal processing should be involving the 
noisy signal itself in constructing the signal processing 
method. The noise in such systems is cancelled by band 
modification using moving average, signal averaging, 
inverse filtering and noise cancellation by subtraction. 
These methods are time consuming and due to signal 
processing time restrictions not always may be used in real 
time systems. During the last time the wavelets have 
become a popular de-noising (or noise reduction) tool and 
this method has statistical optimality properties. New data 
processing method based on the wavelet transform for real 
time systems is suggested. It is shown that the hard 
threshold algorithm is preferred to the soft threshold in 
such systems. Execution of this method leads to less 
amount of floating point operations than classical signal 
processing methods. 
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Iškraipytų signalų apdorojimas realaus laiko DSP sistemose 

Reziumė 

Ultragarsinėse sistemose daug dėmesio skiriama triukšmo sukeltų 
efektų pašalinimui. Daugelis triukšmo sumažinimo metodų nėra 
pakankamai efektyvūs, todėl dažnai vienoje sistemoje naudojami keli 
metodai iš karto. Dėl to išauga skaičiavimų apimtis, o kartu ir signalų 

apdorojimo trukmė. Šiuo metu plačiai pradėti taikyti vilnelių 
transformacija pagrįsti triukšmų sumažinimo metodai, kurie yra 
statistiškai optimalūs. Pasiūlytas vilnelių transformacija pagrįstas signalo 
apdorojimo ultragarsinėse nedestruktyvaus testavimo sistemose metodas. 
Parodyta, kad šiam signalo apdorojimo metodui įgyvendinti reikia mažiau 
skaičiavimų ir pagerėja labai svarbus realaus laiko sistemų parametras – 
signalo apdorojimo trukmė. 
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