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Notations 

h the non-dimensional coefficient of viscous friction 

 i, n a natural member 

 y the variable 

α  the angle of excitation 

ε  a dummy small parameter at the end of calculations assumed 
equal to 1 

τ  the non-dimensional time 

Ω  the non-dimensional angular velocity of rotational motion 

ω  the frequency 

– over the member means the sign of overrating  

~ over the member indicates that the constant part of this 
member with respect to the period is equal to 0 

1. Introduction 
In contemporary engineering systems with parametric 

excitation of vibrations and wave type are being used more 
videly [1– 6]. The systems with vibration excitation have 
been analysed more videly and some questions of their 
advancement have been solved. But until now the research 
of parametrically wave excited systems is in the initial 
stage. The purpose of this work is to analyse the system 
excited parametrically by a harmonic travelling wave, 
which is described by a simple linear and non-linear 
differential equation of the second order. The systems of 
this types are met in mechanical systems [3], [4], [6]. The 
results of research determining the dynamical 
characteristics of the system and revealing the specific 
qualities are useful for practice. This investigation is 
performed numerically and by an approximate analytical 
method.  

2. Numerical analysis 
Canonical form of the Mathieu equation, describing 

the motion of elliptic membrane, is given in [1]: 
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where the parameters Rqa ∈, , though the same 
requirement for τ  is not necessary.  

In [1] it is shown that the solution of Eq. 2.1 may take 
the form: 
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Moreover, function pairs 
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from the zones of unstable solutions of Eq. 2.1 in the 
parameter plane qa − . The function pairs touch the axis 

0=q  at the points ,ma =  where ,...3,2,1=m  
The stability zones of the dissipative Mathieu equation 
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where h is the coefficient of linear viscous friction are 
numerically found and presented in Fig. 1. Due to presence 
of energy dissipation, the function pairs (2.3) do not touch 
the axis 0=q .  

 
 

Fig. 1. The stability zones of Mathieu equation with dissipation at 
1,0=h . Black colour represents the stable zone, white – 

unstable. Horizontal axis denotes q , vertical a. The range 

]30,0[∈q , range of ]30,0[∈a  



ISSN 1392-2114 ULTRAGARSAS, Nr.4(49). 2003. 

 21

We introduce the modified Mathieu equation with zero 
derivative term holding a propagating unity: 
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where Rk ∈ . 
It is clear that presence of k modifies the structure of 

the solution. The stability zones at different values of k are 
presented in Fig. 2 – 5. All other parameters are analogous 
to Fig.1. 

 

 
 

Fig. 2. Stability zones at 01,0=k  

Important phenomena of Eq. 2.5 is that presence of 
even a small k dramatically changes the boundary line 
between the stable and unstable regions. Moreover, this 
line acquires fractal properties. Nevertheless, the global 
stability criterion is still valid for values of q sufficient 
larger than a – solution then turns unstable similarly as for 
Eq. 2.4. 

 

 
 

Fig. 3. Stability zones at 1,0=k  

 
 

Fig. 4. Stability zones at 1=k  

 

 
 

Fig. 5. Stability zones at 100=k  

The practical analysis of a system loaded on a profile 
performing the oscillations of a propagating wave type, 
leads to a modification of Eq. 2.5: 

 ( )( ) 0sin2cos2
2

2
=−−++ ykyqa

d
dyh

d

yd
τ

ττ
. (2.6) 

The stability analysis of this equation is in principle 
different – the derivative of solution ( )τy  does not tend to 
infinity. 

If the average turning velocity of the system in a 
steady state regime of motion is denoted as ω (the average 
of the derivative of solution), the solution of Eq. 2.6 may 
be classified into 3 types of reactions: 

a) solution with 0=ω ; 
b) solution with 0>ω ; 
c) solution with 0>ω . 
If the numerical stability determination techniques are 

modified in a way, that stable solution is interpreted as a) 
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case, and unstable – as b) and c) variants, the parametric 
plane would look like presented in Fig.6. 
 

 
 

Fig. 6. Classification of solutions at 0,1 == αk . Other parameters 
are analoque to those of Fig. 1– 5 

3. Analytical investigation 
In those regions of space where chaos does not exist 

the steady state regimes may be analysed analytically.  
 

3.1. The vibrating regimes 
 
The steady state regime of Eq. 2.6 is sought in the 

form 
 y~+= yy , (3.1) 

where y  and y~  are the slow and fast regimes respectively 
[3]. The regime y~  is described by the following 
differential equation 
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The steady state fast motion on the basis of Eq. 3,2 is 
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 ( ) ( )[ ]ykhyk −+−−⋅ ττ 2sin2cos2 . (3.3) 
On the basis of Eq. (2.6)–(3.3) the slow motion is 

described by the following differential equation of motion 
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or after performing the expansions into the power series 
with respect to y~  it is obtained 
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By taking into account in the expansion of 
( )[ ]yyk ~2cos +−τ  with respect to y~  only the linear part 

and in the expansion of ( )α++ yy ~sin  the zero member of 
the power series with respect to y~  it is obtained 
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Also assuming that a and h are small quantities  
 aa ε≡ , 
 hh ε= , (3.8) 

from Eq. 3.6 it is obtained  
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From Eq. 3.9 the solutions α+y  are sought in the 
form of a power series with respect to ε  
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From the zero approximation it follows that   
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are stable regimes, and  
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are unstable regimes. 
From the Eq. (3.9) and (3.10) it is found  
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( ) 1iy α+  determined by Eq. (3.13) give a qualitative 
answer in which direction the displacement of the average 
position takes place.  

 
3.2. The rotational regimes 

 
The solutions of Eq. (2.6) are sought in the form 
 yyy ~++Ω= τ . (3.14) 
Eq. 2.6 by taking into account Eq. 3.14 takes the form 
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( ) ( )[ ] 0...cos~sin =++ΩΩ++Ω⋅ yyy ττ . (3.15) 
In this case for the qualitative analysis it is sufficient 

to take into account only the zero member of the power 
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series with respect to y~  in Eq. 3.15. Thus from Eq.3.15 it 
is obtained  
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In this case the rotational regimes may exist when 
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the conditions of existence and stability of which are 
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and the equation for the determination of y  is  

 ( )
q

hyk Ω
=+ 21sin . (3.20) 

Also the following rotational regime may exist  
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and the equation for the determination of y  is 
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Also other rotational regimes may exist, for the 
investigation of which when obtaining Eq. 3.16 it is 
necessary to use higher members of the power series with 
respect to ε  in Eq. 3.15. 

3. Conclusions 
It is shown that in the mechanical system with 

parametric excitation by a harmonic travelling wave 
specific phenomena arise if compared with the simple 

harmonic excitation. Among those specific phenomena is 
chaos which exists in a wide region between the stable and 
unstable regimes in the separating zones. This depends 
much on the length and frequency of the travelling wave. 

In the case of the wave excitation steady state regimes 
of rotational type also exist. Also between the vibrating 
and rotational regimes a wide separating zone is filled by 
the regimes of chaotic type. 

In case of parametric wave excitation the vibrating and 
rotational regimes of deterministic type are analysed. The 
main parameters and the conditions of existence and 
stability of the simplest steady state regimes are 
determined.  
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Bėgančiąja banga parametriškai žadinamos mechaninės sistemos 
dinamika 

Reziumė 

Analizuojama parametriškai žadinamos mechaninės sistemos 
dinamika. Parodyta, kad tuo atveju, kai sužadinimas yra bėgančiosios 
bangos tipo, ribos, skiriančios stabilius ir nestabilius judesio režimus, yra 
fraktalinės. Atlikta apytikslė analizinė stacionarių judesių analizė. 
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