
ISSN 1392-2114 ULTRAGARSAS, Nr.4(49). 2003. 

 34

Hybrid numerical – experimental holographic fluid interferometry: two-
dimensional compressible fluid 

K. Ragulskis1, A. Palevičius1, J. Ragulskiene2, R. Palevičius1 

1Kaunas University of Technology 
2Kaunas Technical College 

 
Introduction 

Holographic interferometry enables effective analysis 
of flow problems and high frequency vibrations of fluids. 
Development of hybrid numerical – experimental fluid 
holographic methods is important for the interpretation of 
experimental results. In this paper the method of 
holographic interferometry is used for the analysis of the 
two-dimensional fluid vibrations. The eigenpairs of the 
fluid are determined by solving the problem using the 
finite element method. The analysis is based on [1, 2, 3, 4]. 

Here the plotting procedure is developed including the 
smoothing of the values of volumetric strain in order to 
obtain more realistic holographic images of the 
eigenmodes of a fluid. Conventional FEM analysis 
techniques are based on the approximation of nodal 
displacements (not the volumetric strains) via the shape 
functions [1, 2, 3]. Conventional FEM would require 
unacceptably dense meshing for producing sufficiently  
smooth images. Therefore the technique for smoothing of 
the generated images representing the distribution of the 
volumetric strains and calculated from the displacement 
distribution is developed. The smoothing technique is 
similar to conjugate approximation used for the calculation 
of nodal values of stresses in [3] and enables to obtain the 
images of better quality on a coarse mesh by using the 
displacement formulation for the calculation of the 
eigenmodes.  

Numerical model of the system 
The mass matrix of the fluid is: 
 ∫= NdxdyNM T ρ , (1) 

where ρ is the density of the fluid, N is the matrix of the 
shape functions defined from: 
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where u, v are the displacements in the directions of the 
axes of coordinates x and y, δ is the displacement vector, 
that is:  
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where Ni are the shape functions. 
The stiffness matrix of the fluid is: 
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where c is the speed of sound, λ is the penalty parameter 
for the condition of irrotationality, g is the acceleration of 
gravity, the second integral is over the free surface only, 
the matrix B  is defined from: 
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the matrix B~  is defined from: 
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the matrix N of the shape functions is defined from: 
 δNv = , (9) 

that is:  
 [ ]...0 1NN = . (10) 

Construction of the holographic image 
The phase of the light from the laser beam is given by 

[4]: 

 ( ) ( )[ ]hyxnnyx flow ,2, 0 −=Ψ
λ
π , (11) 

where h is the distance that the light travels through the 
fluid, λ is the wavelength of the laser beam, n0 and nflow  
are the refractive indexes in the initial and flow conditions 
respectively. 

The refractive index is expressed as [4]: 

 ( ) ( )
0

,1,
ρ

ρβ yxyxn +=  , (12) 

where ρ0 is the density constant in the region of the flow in 
the status of equilibrium, β is the constant of 
proportionality. 

From the previous relationships it follows that: 
 ( ) ( )yxkyx flow ,, 0 ρ−Ψ=Ψ , (13) 

where the initial phase ψ0 and the coefficient of 
proportionality k are expressed like: 
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0 =Ψ , (14) 
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Further it is assumed that: 
 ( ) ( ) 0,,,,~ ρρρ −= tyxtyx flow , (16) 

where the deviation of the density from the density in the 
status of equilibrium is small: 

 ( ) 0,,~ ρρ <<tyx . (17) 
Then: 
 ( ) ( )tyxkyx ,,~, 0 ρ−Ψ=Ψ , (18) 

where 
 000 ρk−Ψ=Ψ . (19) 
Further it is assumed that the density and the 

displacements are harmonically varying in time: 
 ( ) ( ) ( )tyxtyxflow ωρρρ cos,~,, *

0 += , (20) 
and 
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where ω can coincide with the frequency of oscillations of 
the appropriate eigenmode. 

The equation of continuity of the fluid can be 
represented as: 
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Eq. (22) together with the Eq. (20) and (21) gives: 
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So after performing the initial calibration of the phase 
of the laser beam its intensity I for the stroboscopic image 
can be expressed as: 
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where the coefficient a can be expressed from the 
equations (18) and (23): 

 
ω
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It is assumed that the fluid performs high frequency 
vibrations according to the eigenmode (the frequency of 
excitation is about equal to the eigenfrequency of the 
corresponding eigenmode and the eigenmodes are not 
multiple). The vibrations of the system are registered 
stroboscopically when the structure is in the state of 
extreme deflections according to the eigenmode. In this 
case the problem is to obtain the volumetric strains present 
in Eq. (24) of acceptable quality for the eigenmode (the 
eigenmode of volumetric strains). 

The volumetric strains at the points of numerical 
integration of the finite element are calculated in the usual 
way: 
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where {δ0} is the vector of nodal displacements of the 
eigenmode; [B] is the matrix relating the volumetric strains 
with the displacements: 
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The displacements are continuous at interelement 
boundaries, but the calculated volumetric strains due to the 
operation of differentiation are discontinuous. The 
eigenmode of strains is obtained by minimising the 
following error: 
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where λ - the smoothing parameter; {δv} - the vector of 

nodal values of 
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 (the eigenmode of volumetric 

strains); [N] - the row of the shape functions of the finite 
element; [B*] - the matrix of the derivatives of the shape 
functions: 
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This leads to the following system of linear algebraic 
equations for determination of the volumetric strains: 
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The choice of the smoothing parameter is performed 
interactively from the qualitative view of the digital 
holographic images. When the parameter is too small the 
images are insufficiently smooth because of the volumetric 
strains calculated from the displacement formulation. 
When the parameter is too large an oversmoothed image is 
obtained which may look acceptable, but be far from a real 
holographic image.  

Numerical investigation 
The rectangular domain is analysed. The lower 

boundary is a rigid boundary and the displacements normal 
to it are set to zero. The upper surface is assumed to be a 
free surface. The periodic boundary conditions in the x 
direction are assumed: that is the values of the 
corresponding displacements on the left and the right 
boundaries for the same values of the y coordinate are 
assumed to be mutually equal. 

The eigenmodes are calculated and on their basis the 
stroboscopic holographic images are constructed. The 
obtained unsmoothed image for the second eigenmode is 
shown in Fig. 1. The smoothed images for the second and 
the third eigenmodes are shown in Fig. 2 and Fig. 3. 
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Fig. 1. The unsmoothed stroboscopic holographic image for the second eigenmode 

 

 
 

Fig. 2. The smoothed stroboscopic holographic image for the second eigenmode 

 

 
 

Fig. 3. The smoothed stroboscopic holographic image for the third eigenmode 

 
Conclusions 

The method of holographic interferometry is applied 
for the two-dimensional problem of vibrations according to 
the eigenmode by using the stroboscopic method 
lightening the structure in the state of extreme deflections.  

The obtained stroboscopic holographic images of the 
multiple eigenmodes for the analysed periodic system may 
be effectively used for the excitation of wave motion in the 
fluid transport systems. As the displacement based FEM 
formulation is used for volumetric strains based 
holographic analysis, the introduced smoothing procedure 
enables generation of holographic images on coarse finite 
element meshes.  
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K. Ragulskis, A. Palevičius, J. Ragulskienė, R. Palevičius 

Hibridinė skaitmeninė-eksperimentinė skysčio holografinė 
interferometrija: dvimatis spaudžiamas skystis 

Reziumė 

Naudojant poslinkių formuluotę ir tūrinės deformacijos skaičiavimą 
glotninant, gautos skysčio savos formos virpesių stroboskopinės 
holografinės interferogramos. Analizuoto uždavinio kartotinės formos 
periodinėje konstrukcijoje taikomos banginiam transportavimui.  
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