
ISSN 1392-2114 ULTRAGARSAS, Nr.4(49). 2003. 

 37

Sound insulation of technological pipelines in premises 

A.Čiučelis, D. Gužas, R. Maskeliūnas 

Vilnius Gediminas Technical University 
 
Introduction 

It frequently occurs in practice that technological 
pipelines run through silent premises from one wall to 
another. If a certain medium (air or any liquid) is moving 
in pipelines, their walls propagate noise into silent 
premises. In addition, sound may also propagate in 
pipelines from the noise source, which is located quite far 
away, at the end of the pipeline (e.g., a ventilator or 
compressor). Also, a depending on the velocity of the 
medium moving in a pipeline, various noise appear in the 
medium itself. 

As it was proven [1], sound in the pipeline propagates 
quite far away, radiating a considerable part of sound 
power through pipe walls. 

For abatement of noise caused by such pipelines, it is 
recommended to apply cylindrical shells. The general 
characteristics of sound insulation of the cylindrical shells 
were described in article [2]. The efficiency of sound 
insulation of cylindrical shells depends greatly on the 
reinforcement of the shell and its contact with the pipeline 
itself. For that purpose it is possible to propose many ways 
for fastening of cylindrical shells. In this paper we shall 
analyze one of these methods. 

Sound insulation of limited shell in rigid screen 
Let us consider a model of sound-insulated 

arrangement (see Fig. 1) an elastic shell of the length l  
and radius ka  make a part of infinite rigid cylinder the 
axis of which coincides with the axis z  of cylindrical 
coordinate system (Fig. 2). Radiator is an infinite cylinder 
with the radius kaa <0 , coaxially located with the shell. 
Along the radiator length l  an arbitrary distribution of 
radial velocities w&  is set (Fig. 1). Inside and outside the 
shell there is a medium which is characterized by density 

bρ  and sound distribution bc . Side walls at clearance 
between cylinder and shell by 0=z  and lz =  are to be 
rigid; consequently, eigenvalue functions along the axis z  
are zkmcos , where lmkm /π=  and ...,2,1,0=m  – the 
whole number. 

It is supposed that at the shell edges by 0=z  and 
lz =  fixation conditions being carried out are analogous 

[3]. Then, the radial velocity of shell oscillations w&  may 
be written as 
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The sound field 2p , radiated by a shell to the 
surrounding space, is sought by Fourier series: 
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where ( )1
nH  is the Hankel function of the first order n, 

bb ck /ω=  is the medium wave number, 22 kkk br −=  
is the radial wave number. 

At the boundary by kar =  boundary conditions 
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expressing equality both the shell radial velocity and the 
medium particles must be fullfilled. Taking derivative by 
r  to Eq. 2 and substituting the given meaning to Eq. 3 we 
get 
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Fig. 1. Coordinate axis and problem designation by sound insulation of limited shell 
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Let us apply the Fourier inverse transformation to this 
equation. Then  
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Integral in this expression equals to 
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Substituting the obtained expressions for ( )kp n2  to 
(2), we get a sound field being radiated by the shell in a 
rigid screen at the known distribution of radial velocities: 
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Integral I  in Eq. 4 may be assessed by the crossing 
method [4]. Integral assessment technique of this kind is 
given a detail analysis in [5], therefore final result is 
presented. 

It must be noted that the subintegral function F  is 
featureless. By mkk =  both the denominator and the 
numerator turn into zero. The function F  by mkk →  is 
final. That is why by continuous deformation of integral 
contour to the crossing path 1Γ  special points of F  are not 
touched and the main meaning I  is defined by crossing 
the contour 1Γ . By 10 >>rkb  
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  (5) 
Here 0r  is the distance from the beginning of the 

origin of coordinates to the observation point, 0θ  is the 
angle between directions 0r  and the plane 0=z . In the 
expression given in square brackets 0sinθ= bkk . Its 
peculiarities should be mentioned: by 00 =θ  it turns into 

zero for all m , except 0=m . The expression [ ] 1i=  and 
sound pressure 2p  at 00 =θ  is written as 
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Similarly it is possible to define the sound pressure 
0p  which is set up by the source in the case the shell is 

absent 
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Here mnV0  is the amplitude in harmonic series 
scanning of the radial velocity of the source 0ω&  by 

functions 0·cos zke m
inϕ− : 
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In some cases the expression for 0p  gets considerably 
simplified, if not to scan 0ω&  in series by zkmcos  and to 
present it in the form of the Fourier integral. Then 
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By using boundary conditions Eq. 3 at 0ar =  we 
define ( )kp0

~  and the pressure 0p  
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Applying the crossing method, expression for the 
sound field source is obtained: 
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In Eq. 9 summation is performed only by n . In the 
case of axial symmetry excitation, only the term with 

0=n  is left and the expression becomes simplified. 
In order to define shell sound insulation it is necessary 

to find its radial velocity ( )zw ,ϕ&  or spectrum amplitudes 

mnV . It is not easy, because the pressure 2p  included into 
the equation of shell movement is expressed by the radial 
velocity. Thus w&  is defined whether by solution of the 
Fredholm’s integral equation or by infinite system of 

 
Fig. 2. The chosen system of coordinates 
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algebraic equations. Both approaches lead to complex 
expressions, and in space medium case we will not get 
appreciable results. The essence may be explained in the 
following way: shell movement equation in the form of 
impedance may be written as 

 mnmnmnmn ppVZ 21 −= , (10) 

where mnp1  and mnp2  are the pressure amplitudes of 
normal waves, nm,  are the numbers inside and outside the 
shell and mnZ  is the impedance for this wave. It follows 
from Eq. 10 that at large values of the impedance mnZ  the 
sound pressure mnp1  will be significantly greater than 

mnp2  and outside medium reaction may be neglected. 
Mathematically, this condition may be written as 

 излmn ZZ >> , 

where mnmnизл VpZ /2=  is the radiation impedance for 
infinite cylindrical shell or limited shell considered in [3]: 
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by small sizes ka , when ,nak krm <<  
naiZ kbизл /ωρ−≈ . By large sizes ka , when 

,nak krm >>  22 /1/ bmbbизл kkcZ −= ρ , i.e., is striving for 
a normal medium impedance. Characteristically air 
impedance is not large, that is why condition излmn ZZ >>  
is fulfilled everywhere, except low frequency areas, where 

0~mnZ . That is why neglection of medium reaction by 
definition mnV  will not lead to big errors. However, the 
first approximation it is easier to take into account outside 
medium reaction towards shell oscillations, supposing that 
it does not differ significantly from medium reaction of the 
problem [6]. Then it is possible to use the results obtained 
and to write the radial speed amplitude 
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where ( ) ( ) ( ) ( )krmnkn akHaH 2,12,1 && = . 

By substituting mnV  from Eq. 12 to Eq. 5, we get 
expression for the sound pressure radiated by the shell. 

Let us define the sound insulation as 
 ( ) ( ) 2

000002 ,,/,,lg10 θϕθϕ rprpR −= . 
By using Eq. 5, Eq. 6 and Eq. 12 we find 
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Here 
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The quantity mF  is limited by mb kk →0sinθ , 

mm kilF 2/→ . In the case of axial symmetric excitation, 
summation by m  disappears, as only the member with 

0=m  remains.  
Then 
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In the case of excitation by a pulsating cylinder the 

source of the zero order from sum by m  one member 
0=m  remains, so as 000 =mV , when 0≠m  and 

constVV 0000 = , when 0=m . Then 
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When the source is of the small radius 0a , by 100 <<ak  
and 10 <<akm : 
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Thus, sound insulation is composed of two parts – 1R  

and 2R . 1R  represents the already known sound insulation 
quantity of an infinite shell [7], producing radial 
oscillations. Zeros of 1R  will be on air resonances inside 
the shell when ( ) 01 =kbakJ  and on the shell resonance 
when 10 =kak , e.g., at the frequency kacf π= 2/00 , 
where 0c  is the propagation velocity of a longitudinal 
wave in the plate. 2R  is dependent on the sound insulation 
angle 0θ .  

Analysis of the results obtained 
The formulas obtained for calculation of insulation of 

cylindrical shells is somewhat complex. However, if the 
high precision of calculation is not required, we can 
simplify them by introducing certain corrections. 

It should be noted that 2R  includes ratio of the 
function ( )xxH1 , so that it could be written: =2R  

= ( ) ( ) 2
1

2
010 lg10coscoslg10 kbkbkbkb akHakakHak −θθ  

Diagram of the function ( ) 2
1lg10 xxHF =  is given in 

Fig.3.  
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At small values ( ) dB4dB9,3/4lg100 2 −≈−=→→ πFx . 
At ( ) ( )dB2-10lgx64,0lg10,1 =≈>> xFx . 
By means of the diagram F  it is possible to calculate 

correction of 2R  to sound insulation of an infinite shell. 
For this we may write: 0/ ffak kb = , where 

kb acf π= 2/0  is the frequency at which one wave length 
fits in air on the shell circumference. At the chosen 
frequencies f  and at the angle 0θ  values 0/ ff=α  and 

0cosθ  are located. By means of the diagram values 
( )021 cosθα= FR  and ( )α= FR22  and later 

22212 RRR −= . 

It follows from Eq. 17 that at 0,0 20 == Rθ , e. g. R  
coincides with the sound insulation of the shell. Under 
different angles the sound insulation is lower, as F  is 
monotonously increasing function, and 1cos 0 ≤θ . In 
consequence of this ( ) ( ) 0cos 02 ≤−θ= bbbb akFakFR , 
where 2R  increases by absolute value with the increase of 
the angle 0θ . 

In case of excitation by a fixed source not directed at 
the angle ϕ , the radial velocity ( )000 zzV −δ=ω&  (point 
source located at the point 0zz − ). The amplitude  

lzkVV mm /cos2 0000 =  
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The sound pressure produced by the shell is given by 
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The sound pressure produced by the source may be defined 
by Eq. 9 
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The sound insulation is given by 
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For the source of a small radius 0a , when 10 <<akrm  
and 10 <<akb , 
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It should be noted that 

12sin →→→ mmb F
il
kkkk θ . At 00 =θ , e. g., in the 

plane 0=m , from sum by m only one member with 0=m  
remains. Then 

 6lg10
2

lg10 2
00

2
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Addend in (20) is already known sound insulation of 
an infinite shell, producing radial oscillations. Total sound 
insulation by concentrated excitation on axis when 00 =θ  
at 6 dB is lower than the sound insulation of an infinite 
shell, but it remains rather high. 

Conclusions 
In the case under consideration the cylindrical noise 

source, placed between the two rigid screens, may be 
insulated by a cylindrical shell, the efficiency of noise 
reduction of which is evaluated theoretically. When 
identifying the sound insulation of the cylindrical shell, 
many factors that have an effect on the determination of 
insulation properties have been evaluated. Here it was 
established that sound insulation consists of two parts. The 
first R1 represents the indicated value of sound insulation 
of an infinite shell. The second part R2 contains the 
dependence of sound insulation on the angle between the 
direction Θ  and the plane 0=z . 
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A. Čiučelis, D. Gužas, R. Maskeliūnas 

Technologinių vamzdynų garso izoliacija patalpose 

Reziumė 

Straipsnyje pateikiama teorija, kaip galima sumažinti triukšmą, 
sklindantį patalpoje nuo vamzdynų sienelių. Patalpoje išdėstytų 
vamzdynų sukeliamą triukšmą galima izoliuoti cilindriniais gaubtais, 
kurių parametrai apskaičiuojami naudojantis pateikta teorija. Šiame 
straipsnyje nurodomi veiksniai, kurie turi įtakos garso izoliavimo 
cilindriniais gaubtais efektyvumui. Nustatyta, kad tyrinėjamo cilindrinio 
gaubto garso izoliacija susideda iš dviejų dalių - R1+R2. Pirmoji dalis (R1) 
parodo begalinio cilindrinio kevalo garso izoliacijos dydį, antroji (R2) - 
garso izoliacijos priklausomybę nuo kampo Θ tarp krypties rodiklio r0 ir 
plokštumos z=0. Straipsnyje pateikiama supaprastinta teorija, kaip, darant 
tam tikras pataisas, preciziškai tiksliai apskaičiuoti garso izoliaciją. 
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