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Sound insulation of technological pipelines in premises
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Introduction

It frequently occurs in practice that technological
pipelines run through silent premises from one wall to
another. If a certain medium (air or any liquid) is moving
in pipelines, their walls propagate noise into silent
premises. In addition, sound may also propagate in
pipelines from the noise source, which is located quite far
away, at the end of the pipeline (e.g., a ventilator or
compressor). Also, a depending on the velocity of the
medium moving in a pipeline, various noise appear in the
medium itself.

As it was proven [1], sound in the pipeline propagates
quite far away, radiating a considerable part of sound
power through pipe walls.

For abatement of noise caused by such pipelines, it is
recommended to apply cylindrical shells. The general
characteristics of sound insulation of the cylindrical shells
were described in article [2]. The efficiency of sound
insulation of cylindrical shells depends greatly on the
reinforcement of the shell and its contact with the pipeline
itself. For that purpose it is possible to propose many ways
for fastening of cylindrical shells. In this paper we shall
analyze one of these methods.

Sound insulation of limited shell in rigid screen

Let us consider a model of sound-insulated
arrangement (see Fig. 1) an elastic shell of the length /
and radius a; make a part of infinite rigid cylinder the
axis of which coincides with the axis z of cylindrical
coordinate system (Fig. 2). Radiator is an infinite cylinder
with the radius a; < a; , coaxially located with the shell.
Along the radiator length / an arbitrary distribution of
radial velocities w is set (Fig. 1). Inside and outside the
shell there is a medium which is characterized by density

pp and sound distribution cp, . Side walls at clearance
between cylinder and shell by z=0 and z=/ are to be
rigid; consequently, eigenvalue functions along the axis z
are cosk,,z, where k,, =mn/l and m=0,1,2,... — the
whole number.

It is supposed that at the shell edges by z=0 and
z =1 fixation conditions being carried out are analogous
[3]. Then, the radial velocity of shell oscillations w may
be written as
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The sound field p,, radiated by a shell to the
surrounding space, is sought by Fourier series:
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where H ,9) is the Hankel function of the first order n,

ky =w/cp is the medium wave number, &, = 1“‘13 N

is the radial wave number.
At the boundary by r = a; boundary conditions
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expressing equality both the shell radial velocity and the
medium particles must be fullfilled. Taking derivative by
r to Eq. 2 and substituting the given meaning to Eq. 3 we
get
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Fig. 1. Coordinate axis and problem designation by sound insulation of limited shell
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Py(1:9:6,

Fig. 2. The chosen system of coordinates

Let us apply the Fourier inverse transformation to this
equation. Then

ponlk)= oy nga;{ ) Z m".[ cos k,ze *Fdz .
Integral in this expression equals to
i l—(=1y" e[ ™
[

Substituting the obtained expressions for p,,(k) to

(2), we get a sound field being radiated by the shell in a
rigid screen at the known distribution of radial velocities:
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Integral / in Eq. 4 may be assessed by the crossing
method [4]. Integral assessment technique of this kind is
given a detail analysis in [5], therefore final result is
presented.

It must be noted that the subintegral function F is
featureless. By k =k, both the denominator and the

numerator turn into zero. The function F by k —k,, is
final. That is why by continuous deformation of integral
contour to the crossing path Iy special points of F are not
touched and the main meaning / is defined by crossing
the contour I7 . By kpry >>1
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Here 1y is the distance from the beginning of the
origin of coordinates to the observation point, 6, is the
angle between directions r; and the plane z=0. In the
Its

peculiarities should be mentioned: by 6, =0 it turns into

expression given in square brackets k =k, sin0.

38

zero for all m, except m=0. The expression [ |=il and

sound pressure p, at 6, =0 is written as
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Similarly it is possible to define the sound pressure
po Wwhich is set up by the source in the case the shell is
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Here V;,,, is the amplitude in harmonic series

scanning of the radial velocity of the source ®, by
functions e cos k,, 'z :
27
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In some cases the expression for p, gets considerably
simplified, if not to scan ®, in series by cosk,z and to
present it in the form of the Fourier integral. Then
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By using boundary conditions Eq. 3 at r=ay we

define pg(k) and the pressure pg
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Applying the crossing method, expression for the
sound field source is obtained:
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In Eq. 9 summation is performed only by 7. In the
case of axial symmetry excitation, only the term with
n=0 is left and the expression becomes simplified.

In order to define shell sound insulation it is necessary
to find its radial velocity v'v(w,z) or spectrum amplitudes

Vun - It is not easy, because the pressure p, included into

the equation of shell movement is expressed by the radial
velocity. Thus w is defined whether by solution of the
Fredholm’s integral equation or by infinite system of



algebraic equations. Both approaches lead to complex
expressions, and in space medium case we will not get
appreciable results. The essence may be explained in the
following way: shell movement equation in the form of
impedance may be written as

Z,.V,
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where py,,, and p,,, are the pressure amplitudes of

= Plmn — P2mn »

normal waves, m, n are the numbers inside and outside the
shell and Z,,
from Eq. 10 that at large values of the impedance Z,,,, the

is the impedance for this wave. It follows

sound pressure py,, Will be significantly greater than
Pamn and outside medium reaction may be neglected.
Mathematically, this condition may be written as

Zmn >> ZMS’./Z ’
where Z,., = poun ! Vi 15 the radiation impedance for
infinite cylindrical shell or limited shell considered in [3]:
_ ipywH Dkmte) (an
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by small sizes ay, when kymay <<n,
Z,,, =—ippwa; /n. By large sizes aj;, when

= pyep I 1—k2 1 k7 . i.e., is striving for

a normal medium impedance. Characteristically air
impedance is not large, that is why condition Z,,,, >>Z,.,

kpmag >>n, Z,.,

is fulfilled everywhere, except low frequency areas, where
Zn ~ 0. That is why neglection of medium reaction by

definition V,,,,

first approximation it is easier to take into account outside
medium reaction towards shell oscillations, supposing that
it does not differ significantly from medium reaction of the
problem [6]. Then it is possible to use the results obtained
and to write the radial speed amplitude

will not lead to big errors. However, the
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where #02(a; )= Bk, a; ).
By substituting V,,,
expression for the sound pressure radiated by the shell.
Let us define the sound insulation as
R=-101gp,(r9.9.00)/ po(ro. 9.0 ]2
By using Eq. 5, Eq. 6 and Eq. 12 we find

from Eq. 12 to Eq. 5, we get
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Here
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The quantity F,,
E, —il/2k,
summation by m disappears, as only the member with
m =0 remains.

is limited by k;sin6y —k,,,

. In the case of axial symmetric excitation,

Then
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In the case of excitation by a pulsating cylinder the
source of the zero order from sum by m one member
m=0 remains, so as V,o =0, when m=#0 and
Vooo =Voconst, when m =0. Then
Hl(kbao)Hl kbak COSHO |2
Hl (kbak )Hl kbao COSHO |

o =101gly (16)
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When the source is of the small radius a, by kyag <<1
and ka9 <<1:

2
cos b H(l) kpa; cos0,
R0:101g|700|2+101g| 0 1(1)(b i °)| =R, +R,,
‘ Hy (kbak) ‘
2
14 060 (r2,2 4 1) .
700 HZPbeak(o X )Hl (kpag M1 (kpay )
(17)

Thus, sound insulation is composed of two parts — R;
and R,. R; represents the already known sound insulation

quantity of an infinite shell [7], producing radial
oscillations. Zeros of R; will be on air resonances inside
the shell when J;(kpa;)=0 and on the shell resonance
when kpa; =1, e.g., at the frequency fy=c(y/2nay,
where ¢, is the propagation velocity of a longitudinal
wave in the plate. R, is dependent on the sound insulation

angle 0.

Analysis of the results obtained

The formulas obtained for calculation of insulation of
cylindrical shells is somewhat complex. However, if the
high precision of calculation is not required, we can
simplify them by introducing certain corrections.

It should be noted that R, includes ratio of the

function xH;(x), so that it could be written: R, =
=101g|kbak COSgoHl (kbak COS&()]Z —101g|kbakH1 (kbakxz

Diagram of the function F =10lgxH, (x)|2
Fig.3.

is given in
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At small values x > 0F — 10 lg(4 / ﬂz) -3,9dB = -4dB.
At x >> 1, F ~101g(0,64x) = (10lgx - 2)dB .
By means of the diagram F it is possible to calculate
correction of R, to sound insulation of an infinite shell.

this kbak Zf/fo,
fo =c¢p/2may, is the frequency at which one wave length

For we may write: where

fits in air on the shell circumference. At the chosen
frequencies f and at the angle 0, values a = f/ f; and

cosO are located. By means of the diagram values

Ry =F(acos®y) and Ry =F(a) and later
Ry =Ry = Ry; .
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Fig.3. Frequency characteristic of limited shell sound insulation
correction

It follows from Eq. 17 thatat 8, =0, R, =0,¢e.g. R

coincides with the sound insulation of the shell. Under
different angles the sound insulation is lower, as F is
monotonously increasing function, and cosfp <1. In

consequence of this R, = F(kpaycos0y)— F(kpap)<0,
where R, increases by absolute value with the increase of
the angle 0.

In case of excitation by a fixed source not directed at

the angle ¢, the radial velocity ®q =Vy3(z—zq) (point
source located at the point z — z ). The amplitude
Vomo =2Vo cosk,,zg /1
_ 2V cosk,,zoH (k,mak)
oM mar)

The sound pressure produced by the shell is given by
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The sound pressure produced by the source may be defined
by Eq. 9
—ikpzg sin 6
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The sound insulation is given by
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For the source of a small radius a, when £,,,aq <<1
and kpag <<1,
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It should be noted that
k — ky, sin&—)km%Fm —>1. At §,=0, e. g., in the
i

plane m =0, from sum by m only one member with m =0
remains. Then

R=101g

2
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Addend in (20) is already known sound insulation of
an infinite shell, producing radial oscillations. Total sound

insulation by concentrated excitation on axis when 0, =0

at 6 dB is lower than the sound insulation of an infinite
shell, but it remains rather high.

Conclusions

In the case under consideration the cylindrical noise
source, placed between the two rigid screens, may be
insulated by a cylindrical shell, the efficiency of noise
reduction of which is evaluated theoretically. When
identifying the sound insulation of the cylindrical shell,
many factors that have an effect on the determination of
insulation properties have been evaluated. Here it was
established that sound insulation consists of two parts. The
first R; represents the indicated value of sound insulation
of an infinite shell. The second part R, contains the
dependence of sound insulation on the angle between the
direction ® and the plane z=0.
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A. Ciugelis, D. Guzas, R. Maskelilinas
Technologiniy vamzdyny garso izoliacija patalpose
Reziumé

Straipsnyje pateikiama teorija, kaip galima sumazinti triuk§ma,
sklindantj patalpoje nuo vamzdyny sieneliy. Patalpoje iSdéstyty
vamzdyny sukeliamg triuk§ma galima izoliuoti cilindriniais gaubtais,
kuriy parametrai apskai¢iuojami naudojantis pateikta teorija. Siame
straipsnyje nurodomi veiksniai, kurie turi jtakos garso izoliavimo
cilindriniais gaubtais efektyvumui. Nustatyta, kad tyrinéjamo cilindrinio
gaubto garso izoliacija susideda i$ dviejy daliy - R|+R,. Pirmoji dalis (R,)
parodo begalinio cilindrinio kevalo garso izoliacijos dydi, antroji (R,) -
garso izoliacijos priklausomybe nuo kampo O tarp krypties rodiklio ro ir
plokstumos z=0. Straipsnyje pateikiama supaprastinta teorija, kaip, darant
tam tikras pataisas, preciziskai tiksliai apskai¢iuoti garso izoliacija.
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