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Introduction 

An important issue in ultrasonic nondestructive testing 
(NDT) of composite fiber-reinforced materials is the 
detection of flaw echoes in the presence of structural noise 
due to scattering of ultrasonic waves and high attenuation 
of the ultrasonic signal [1]. The named problems show that 
testing of composite materials requires a special care in 
signal processing. 

For detection and characterization of defects in NDT 
various signal-processing techniques are already used [1-
3]. In all these techniques the signal is analyzed in the time 
domain, in the frequency domain or in the time-frequency 
domain. During the last decade time-frequency signal 
analysis become a popular tool in signal and image 
processing. Both linear and bilinear transforms have been 
utilized to describe the ultrasonic signals in the time-
frequency plane: Gabor or Short Time Fourier transform 
(STFT), the Wigner-Ville distribution, the Split Spectrum 
Processing (SSP) technique, the Wavelet Transform (WT) 
and other [4-7]. The adoption of any method is determined 
according to the special field in which the application is 
made. 

The purpose of the present paper is to provide the 
application of new signal processing method to the defects 
detection in multi-layered fiber-reinforced plastic pipe. The 
experimental investigations of plastic pipe sample with 
artificial defects [8] have showed that detection of holes in 
a porous layer and under this layer is complicated. To solve 
this problem Wavelet Transform signal processing method 
was proposed [9]. Wavelet analysis is still the best 
available non-stationary data analysis method so far. But in 
paper [9] it was shown that the standard signal processing 
procedures of Wavelet Transform can not determine 
defects in porous intermediate layer. Therefore, for solution 
of this problem we propose to use a new method for 
processing of ultrasonic signals called the “Hilbert-Huang 
method” (HH) [10, 11]. 

Hilbert-Huang signal processing 
All methods used for time-frequency signal analysis 

decompose the signal into components and then analyze 
each of them by standard methods. Signal decomposition 
can be implemented in many ways. The so-called Hilbert-
Huang technique is based on direct extraction of the energy 
associated with the intrinsic time scales in the signal. This 
process generates a set of components, called the intrinsic 
modes functions (IMF) [10]. 

The Hilbert-Huang method (HH) consist of two steps: 

- data “sifting” to generate the intrinsic modes 
(IMF); 

- application of the Hilbert transform to the intrinsic 
modes. 

The algorithm to create IMFs establish with the 
definitions of local maxima and minima of the time series 
of the signal s(t). The local maxima smax(t) and minima 
smin(t) are connected by a cubic spline line to produce 
respectively upper envelope us(t) and lower envelope ls(t) 
(Fig.1). Their mean is denoted as m1(t) and is given by: 
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The difference between the original signal s(t) and the 
so-called “running mean” m1(t) is the first component h1(t): 
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Fig.1. Illustration of the calculation of the first component h1(t). 

 
The sifting process has to be repeated up to k times, as 

it is required to reduce the extracted signal to an IMF: 
 )()()( 1)1(11 tmthth kkk −= − , (3) 

where subsequent component h1(k-1)(t) is treated as the 
original signal. The resulting time series is the first IMF: 
c1(t)=h1k(t). To check if h1k(t) is an IMF, the following 
conditions must be fulfilled [11]: 

1) the component h1k(t) should not display under-
shots or over shots riding on the original signal 
and producing local extremes without zero 
crossing; 

2) to display symmetry of the upper and lower 
envelopes with respect to zero; 

3) obviously the number of zero crossing and 
extremes should be the same in both functions. 
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The criterion for the sifting process to stop can be the 
size of the standard deviation, computed from the two 
consecutive sifting results as 
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where m is the maximum number of the original signal 
digitising rate cells, T is the total length of the signal. A 
typical value for SD can be smaller than 0.3. 

The first IMF c1(t) is subtracted from the original 
signal: 

 , (5) )()()( 11 tctstr −=
and this difference is called as the residue r1(t). It is treated 
as the new signal and subjected to the same sifting process.  

The process of finding intrinsic modes cj continues 
until the final residue rn(t) will be a constant or a 
monotonic function. Then it is achieved a decomposition of 
the original signal into n-empirical modes and a residue: 
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The second step is to apply the Hilbert transform to the 
decomposed intrinsic modes functions (IMF). Each IMF 
component has it’s Hilbert transform: 
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where P indicates the Cauchy principal value. With this 
definition the analytic signal is defined as 
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To analyse the analytic signal zj(t) the Hilbert 
amplitude spectrum H(ω, t) is used. Therefore one can 
define an instantaneous frequency ωj given by: 
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Thus the original signal can be expressed: 
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This equation enables us to represent the amplitude (or 
the energy) and the instantaneous frequency in a three-
dimensional plot. In the Hilbert spectrum we can see the 
distribution of the signal energy in the time domain. A peak 
in the Hilbert-Huang spectrum indicates that is highly 
probable that a wave of that frequency appeared at that 
particular point in the time interval considered [11]. 

Application of Hilbert-Huang method to ultrasonic 
NDT signal processing 

To investigate the possibility of application of the 
Hilbert-Huang method to multi-layered plastic pipe 
nondestructive testing, we analyzed two pipe samples with 
artificial defects. In pipe samples artificial defects – side-
drilled holes (SDH) and flat bottom holes (FBH) – at the 
known position were drilled (Fig.2). The samples used in 
this investigation were one layer homogeneous pipe sample 
and three layers inhomogeneous pipe sample with an 
internal fiberglass layer [8]. As one layer pipe the 
polypropylene (PP) with 50-60 % chalk pipe (the wall 
thickness D=7.4 mm) was used. The diameter of all holes 
was 0.5 mm. The pipe sample with PP layer - fibreglass 
layer – PP layer was as the three-layered test pipe. The wall 
thickness of this pipe sample was D=10.8 mm. In the three 
layers pipe the diameter of holes SDH No.1 and FBH No.4 
was 0.5 mm. The diameter of other holes was 1.5 mm. The 
defects in the test objects are determined by the ultrasonic 
pulse-echo immersion method. The pipe samples were 
tested along the coordinates x and y. The reflected signals 
are presented on the graphical screen in form of A-scans 
and B-scans. 

For ultrasonic signal processing by the Hilbert-Huang 
method we have used B-scans of the described pipe 
samples. These B-scans obtained by scanning of the 
transducer along the coordinate x are presented in Fig.3. In 
B-scan of the one layer sample (Fig.3, a) it is seen, that all 
artificial defects at different distances from the front 
surface were successfully detected. How it is seen from 
Fig.3, b the artificial defect FBH No.4 in the first layer of 
the three-layer sample is detected reliably. In the second 
layer the defect SDH No.2 is detected not reliably and in 
the third layer defect SDH No.3 is not detected. 

For detection of these defects we applied the Hilbert-
Huang method. The first step of signal processing is 
decomposition of the all A-scans signals in each B-scan 
into intrinsic oscillation modes or IMFs. Fig.4 displays the 
decomposition into four IMF of the A-scans signals of the 
one (a) and three (b) layers plastic pipe samples.  
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x1=7.5 mm; x2=4.5 mm; x3=5.0 mm;

z1=1.7 mm; z2=5.0 mm; z3=9.0 mm; z4=9.0 mm; z5=5.0 mm; z6=2.0 mm;

 
Fig.2. Artificial defects (SDH and FBH) in plastic pipe samples. 
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Fig.3. B-scans along coordinate x with the artificial SBH and FBH defects in one (a) and three (b) layers plastic pipe samples 
 

In Fig.4 are represented the A-scans signals and four 
IMF modes of this original signals with artificial defects. 
The calculation of each mode is stopped when the 
standard deviation SD is smaller than 0.3 (Eq.4). The 
number of the selected intrinsic modes is based on the 

criteria how much this mode represent the place of 
artificial defect in the time domain. It is seen that the 
first three modes represent the information about the 
upper and bottom surfaces of the pipe samples or 
artificial defects. 
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Fig.4. Decomposition by the sifting method of the ultrasonic signals of the one (a) and three (b) layers pipe samples into four intrinsic modes 

The next step of the signal analysis was 
computation of the instantaneous frequency as a function 
of the time by the Hilbert transform (Eq.7-11). The final 
presentation of the results is an energy-frequency-time 

distribution, designated as the Hilbert spectrum [10]. The 
Hilbert spectra of the four IMF modes of the A-scans 
signals with artificial defects are displayed in Fig.5. 
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Fig.5. The Hilbert spectrum for the ultrasonic signals of the one (a) and three (b) layers pipe samples. The signals energy appears in skeleton 

lines representing each IMF. 
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Let us compare the Hilbert spectra of the ultrasonic 
signals from one (Fig.4a) and three (Fig.4b) layers pipe 
samples. We can see that the C1, C2 and C3 modes 
represent the artificial defects distribution in the time 
scale along the coordinate z. The C4 mode is almost 
monotonic and not informative. Therefore we conclude 
that we can use the three first modes in the analysis. 

To display the Hilbert spectrum distribution along 
the coordinate x we represent the amplitude and the 

instantaneous frequency as a function of coordinates x 
and z in a four-dimensional plot, in which the amplitude 
is presented as the colour coded maps (Fig.6). In Fig.6 a 
and b we represent the spatial distributions of the Hilbert 
spectrum of the first intrinsic modes C1 of the ultrasonic 
signals of the one (a) and three (b) layers pipe samples 
with artificial defects. 
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Fig.6. The Hilbert spectrum of the first IMF of the ultrasonic signals of the one (a) and three (b) layers pipe samples with artificial defects along 

the coordinates x. The contour plots represent the amplitude of the Hilbert spectrum of the one (c) and three (d) layers pipe samples. 
 
 
In Fig.6 c and d we display the contour plot of the 

amplitude of the Hilbert spectrum. We can see that the 
upper and bottom surfaces and the artificial FBH defects 
No.4 and No.5 in the one layer pipe and No.4 in the three 
layer pipe samples are clearly displayed. However, the 
defects FBH No.6 in the one layer and SDH No.2 in the 
three layer samples are not reliably detected. To solve this 
problem we use a new presentation of the Hilbert spectrum. 
We compute the product of the instantaneous frequency fj 
and the amplitude aj and then display this product in a 
three-dimensional plot (Fig.7). The best result of this 
presentation is detection of the defect FBH No.6 in the one 
layer sample (Fig.7, a, c). However, the detection of the 
SDH No.2 defect in the three-layer sample is still 
complicated. 

To determine the defect SDH No.2 in the second 
inhomogeneous layer of the three-layer sample we 
introduce the improved algorithm eliminating the signals 
reflected by regular discontinuities like interfaces. For that 

we use the new signal s’(t) for calculation of the Hilbert 
spectrum. This signal we obtain by subtraction of the signal 
s(t)|x=const at the fixed point x without artificial defect from 
the original signals s(t): 

.)()()(' constxxixi tststs
=

−= . (13) 
The new signal s’(t) we decompose in four intrinsic 

modes and then compute the Hilbert spectrum for each 
IMF. The best results to determining of artificial defect in 
the second layer we have with the second intrinsic modes 
C2 of the investigated signals. The four-dimensional plot of 
the Hilbert spectrum of the second IMF modes along the 
coordinate x is presented in Fig.8, a. The contour plot of the 
amplitude of Hilbert spectrum is displayed in Fig.8, b. 

From the results presented follows that the second 
mode gives information about the location of the defect 
SDH No.2 in the second inhomogeneous layer. 
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Fig.7. The Hilbert spectrum of the first IMF of the ultrasonic signals of the one (a) and three (b) layers pipe samples with artificial defects along 
the coordinates x. The contour plots of the amplitude of the Hilbert spectrum of the one (c) and three (d) layers pipe samples 
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Fig.8. The Hilbert spectrum (a) and contour plot of its amplitude (b) of the second IMF after subtracting signals of the three layers pipe samples 

with artificial SDH No.2 defect. 
 

Conclusions 
In this paper we present the application of a new time-

frequency signal processing method called the “Hilbert-
Huang method”. We adopted this method to detection of 
the defects in the composite plastic pipe samples. The 
experimental investigations of these samples have showed 
that the detection of artificial holes in a porous layer and 
under this layer is complicated. Therefore the aim of this 
study was to detect the artificial defects in a layer with 
glass fibers by the Hilbert-Huang signal processing. 

For decomposition of the original signal we used data 
sifting to generate the intrinsic modes and applied the 

Hilbert transform to this modes. The decomposition results 
have shown that in a homogeneous one layer plastic pipe 
sample the information about defects represents the first 
mode or the combination of the first and second modes. In 
the inhomogeneous three-layers pipe sample detection of 
the defects is not simple. To determine the artificial defect 
in the second layer we used subtraction from the original 
signals the signal at the fixed point without artificial defect. 
This method gives a chance to determine the location of 
defects, but measurement of the coordinates of the defect 
with necessary accuracy is still a problem. 

 

 21



ISSN 1392-2114 ULTRAGARSAS, Nr.2 (43). 2002. 

References 

1. Ultrasonic Testing. The Nondestructive Testing Handbook, second 
edition. Vol.7. Birks A.S., Green R.E., Mclntire P. American Society 
for Nondestructive Testing. 1991. 893 p. 

2. Nondestructive Evaluation and Quality Control. ASM Handbook.. 
ASM International, USA. 1994. Vol.17. 795 p. 

3. Pagodinas D. Ultrasonic signal processing methods for detection of 
defects in composite materials. Ultragarsas (Ultrasound), Kaunas: 
Technologija. 2002. Nr.4 (45). P.47-53. 

4. Malik M.W., Saniie J. Generalized time-frequency representation of 
ultrasonic signals. Proc. IEEE Ultrason. Symp. Publ. 1993. No. 1051-
0117/93. P.691-695. 

5. Cohen L. Time-frequency distributions. A review. Proceedings of 
IEEE. 1989. Vol.77. No.7. 

6. Drai R., Khelil M., Benchaala A. Flaw Detection in Ultrasonics 
Using Wavelet Transform and Split Spectrum Processing. 15th World 
Conference on Nondestructive Testing, Roma (Italy) 15-21 October 
2000. 
http://www.ndt.net/article/wcndt00/papers/idn589/idn589.htm. 

7. Abbate A., Koay J., Frankel J., Schroder S.C., Das P. Signal 
Detection and Noise Suppression Using a Wavelet Transform Signal 
Processor: Application to Ultrasonic Flaw Detection. IEEE 
Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 
January 1997. Vol.44. No.1. P.14-26. 

8. Kažys R., Pagodinas D., Tumšys O. Detection of defects in multi-
layered plastic cylindrical structures by ultrasonic method. 
Ultragarsas (Ultrasound), Kaunas: Technologija. 2002. Nr.2 (43).  
P.7-12. 

9. Kažys R., Pagodinas D., Tumšys O. Analysis of ultrasonic 
determination of defects in polymer materials with porous 

intermediate layer. Matavimai (Measurements). 2003. Nr.2 (26). 
P.24-28. 

10. Huang N.E., Shen Z., Long S., Wu M., Shih H., Zheng Q., Yeng 
N., Tung C., Liu H. The empirical mode decomposition and the 
Hilbert spectrum for nonlinear and non-stationary time series 
analysis. Proc. R. Soc. Lond. A 454. 1998. P.903-995. 

11. Montesinos M.E., Munoz-Cobo J.L., Perez C. Hilbert-Huang 
analysis of BWR neutron detector signals: application to DR 
calculation and to corrupted signal analysis. Annals of Nuclear 
Energy. 2003. Vol.30. P.715-727. 

 

R.Kažys, D. Pagodinas, O.Tumšys 

Hilberto ir Huango signalų apdorojimo metodo taikymas kompozitų 
ultragarsiniams neardomiesiems tyrimams 

Reziumė 

Specifinės daugiasluoksnių polimerinių medžiagų mechaninės 
savybės skatina naujų ultragarsinių neardomųjų tyrimo metodų paiešką. 
Straipsnyje pristatytas naujas Hilberto ir Huango signalų apdorojimo 
metodas, pateiktas trumpas šio metodo signalų apdorojimo algoritmas, 
išnagrinėtos metodo taikymo tiriant vienasluoksnes homogenines ir 
daugiasluoksnes nehomogenines polimerines medžiagas, galimybės. 
Nustatyta, kad vienasluoksnių bandinių ultragarsiniams defektų tyrimams 
informatyviausios yra būdingosios funkcijos pirmoji moda bei pirmosios 
ir antrosios modų suma, tuo tarpu trijų sluoksnių, kai tarpinis sluoksnis 
nehomogeninis, tarpinio sluoksnio defektų tyrimams naudotina 
būdingosios funkcijos antroji moda. 
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