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Introduction 

The dynamics of an undulation plane on the surface of 
an oscillating fluid is a complex non-linear problem. Direct 
experimental analysis of the system is also complicated 
due to relatively small dimensions of the system and small 
amplitude of travelling waves occurring in the undulation 
plane which itself serves as an transportable organ for 
conveyance of small delicate elements in sterile 
environments. Application of whole field time average 
holography could be of practical interest in determining 
optimal parameters of the system, but the interpretation of 
the measurement results would be extremely difficult due 
to the complex interactions between the film and the 
oscillating fluid.  

An attempt to build a mathematical model of the 
interacting elements is undertaken in this paper. 
Application of virtual environments for building numerical 
interferograms is the first step in visualization and 
interpretation of complex experimental results. 

The dynamics of the layer of fluid is analyzed first. 
The finite element with three degrees of freedom per node 
(the horizontal displacements of the layer of the fluid and 
the vertical displacement of the surface of the fluid) is 
developed for the analysis of the described system.  

Further, the film layer is analyzed as a structural 
element by taking into account the interaction with the 
layer of fluid. The finite element with five degrees of 
freedom per node (the deflection and the two rotations of 
the plate and the horizontal displacements of the fluid) is 
developed.  

The experimental analysis of a vibration based 
transporter is presented in Fig.1. The specific feature of 
this assembly is characterized by the interaction of 
undulatory plate and a layer of liquid. The effective 
excitation of coupled vibrations requires knowledge of the 
resonant shapes and frequencies of the coupled system 
what is the primary goal of this paper.  

Numerical model of the layer of the fluid 
The nodal variables are the displacement of the fluid in 

the direction of the x axis u, the displacement of the fluid 
in the direction of the y axis v and the displacement of the 
surface of the fluid in the direction of the z axis w.  

It is assumed that the vertical displacement of the fluid 
wf is zero at the bottom wall [1, 2]. The assumption of 
linear variation of wf leads to the following approximation: 

 ( ) ( )
H
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where H is the thickness of the layer of fluid.  
 

 

Fig. 1. The principal scheme of the transporter consisting of coupled 
plate and liquid layer 

 
Then the volumetric strain in the fluid is [3, 4]: 
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and {δ} is the vector of generalised displacements. 
The rotation is expressed as: 
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The displacement of the surface of the fluid is 

expressed as: 
 

 [ ]{ }δNw = , (6) 
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where: 
 [ ] [ ...00 1NN = ]. (7) 

 
The stiffness matrix takes the form: 
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where ρ is the density of the fluid, c is the velocity of 
sound, λ is the penalty parameter for the introduction of 
the condition of irrotationality, g is the acceleration of 
gravity of the Earth. 

The velocities in the fluid are 
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Assuming that: 
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the kinetic energy of the fluid T takes the form: 
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The mass matrix takes the form: 
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Numerical investigation of the layer of the fluid  
A rectangular domain is analyzed and the eigenmodes 

are calculated.  
For the representation of results the two plots for a 

single eigenmode are produced:  
1) the displacements of the fluid u and v;  
2) the displacement of the surface of the fluid w 

using the cavalier projection [5, 6] with the angle 
π/4. 

The third eigenmode is shown in Fig. 2.  
 
 

Model of the plate interacting with the fluid film  

The model of the analysed system is presented in 
Fig.3. The element developed here is a modification of the 
plate element presented in [2].  

The nodal variables are the deflection of the plate w, 
the rotation of the plate about the x axis Θx, the rotation of 
the plate about the y axis Θy, the displacement of the fluid 
in the direction of the x axis u and the displacement of the 
fluid in the direction of the y axis v. The displacement of 
the ideal fluid normal to the boundary of the region 
covered by the plate is assumed equal to zero. 
 

 
 

a) 

 
b) 

Fig. 2. The third eigenmode: a) the plane motion of the fluid, b) the 
motion of the surface of the fluid 
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Fig. 3. The model of the plate interacting with the fluid film 

 
It is assumed that the vertical displacement of the fluid 

wf is zero at the bottom wall and coincides with the 
displacement of the plate at the top surface of the fluid. 
The assumption of linear variation of wf leads to the 
following approximation: 
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H
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where H is the thickness of the fluid film. 
Then the volumetric strain in the fluid is: 
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The stiffness matrix takes the form: 
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and E is the modulus of elasticity, ν is the Poisson’s ratio, 
h – the thickness of the plate, ks is the shear correction 
factor assumed equal to 1.2, ρf  is the density of the fluid, λ 
is the penalty parameter for the introduction of the 
condition of irrotationality. 

The velocities in the fluid are 
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the kinetic energy of the fluid T takes the form: 
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The mass matrix takes the form: 
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where: 
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and ρ  is the density of the material of the plate. 

Numerical investigation of the plate interacting 
with the fluid film  

The analyzed object is a rectangular elastic plate 
interacting with the fluid film with a fastened edge of the 
plate.  
 

 
 

a) 
 

 
 

b) 

Fig. 4. The tenth eigenmode: a) the plane motion of the fluid, b) the 
motion of the plate 

For the representation of results the two plots for a 
single eigenmode are produced:  

1) the displacements of the fluid u and v;  
2) the displacement of the plate w using the cavalier 

projection [5, 6] with an angle π/4. 
This representation enables to see the correspondence 

of the motions of the fluid and the plate in the eigenmode. 
The tenth eigenmode is shown in Fig. 4.  
The holographic images of the tenth eigenmode of the 

plate are shown in Fig. 5.  
 

 
 

a) 
 

 
 

b) 

Fig. 5. The holographic images of the tenth eigenmode of the plate:   
a) the time averaged image, b) the stroboscopic image 

So, the procedure of experimental and numerical 
analysis of the coupled system consists of the following 
stages: 
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a) determination of the holographic image of the 
analyzed eigenmode of the plate; 

b) performance of the numerical calculations for the 
first eigenmodes as described previously; 

c) determination of the correspondence of the 
experimental eigenmode to the calculated one; 

d) analysis of the numerical results of the vibrations 
of the fluid for this eigenmode. 

Conclusions 
The eigenmodes of the layer of the fluid are 

determined. The obtained results provide the basis for the 
investigation of vibrational devices incorporating the layer 
of the fluid. 

The eigenmodes of the plate interacting with the fluid 
film are determined. The results of calculations describe 
the conditions when the motions of the plate and of the 
fluid film correspond to each another in appropriate 
eigenmodes. 

 The procedure of experimental and numerical analysis 
of the system incorporating the determination of the 
holographic image of the plate is proposed. 

The obtained results provide the basis for the 
investigation of hybrid vibrational transportation devices. 
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M. Ragulskis, K. Koizumi 

Banguojančios plėvelės dinamikos analizė įvertinant paviršinę 
sąveiką su virpančiu skysčiu 

Reziumė 

Sudarytas skysčio sluoksnio baigtinių elementų modelis. Sava forma 
vaizduojama dviem piešiniais: skysčio judesio plokštumoje ir skysčio 
paviršiaus judesio vertikaliąja kryptimi laisvoje projekcijoje.  

Sudarytas plokštelės tipo transportavimo organo, sąveikaujančio su 
skysčio plėvele, matematinis modelis. Gautos pirmosios savos formos 
parodo, kad plokštelės ir skysčio judesiai yra tarpusavyje suderinti. 
Pasiūlytas formos vaizdavimas dviem piešiniais: skysčio judesio 
plokštumoje ir plokštelės laisvoje projekcijoje. Sistemai tirti 
eksperimentiniu ir skaitmeniniu būdais pasiūlyta plokštelės holografiniu 
vaizdu paremta metodika. 
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