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Introduction 

Analysis of the dynamics of a contact pair of 
impression and blanket cylinders in a printing device is a 
complicated and multi-scale problem.  

The dynamics of a plane circular composite beam is 
analyzed in this paper. The beam is considered to have two 
external layers of the beam type and an internal layer of the 
type of an elastic body. The finite element of this beam is 
obtained from the contributions of the three sub-elements: 
two of them (the lower and the upper ones) of beam type 
and the third (the internal one) of the type of an elastic 
layer. The resulting finite element has six degrees of 
freedom per node. The eigenmodes are calculated and it is 
evident that the multiple eigenmodes enable the excitation 
of wave motion in this system. The analysis is based on 
[1,2]. 

The steady state incompressible viscous flow in a 
narrow gap described by the Reynolds equation [3] is 
analyzed. From the solution the shear strain rates may be 
determined. The averaged in the thickness direction 
intensity of the shear strain rates may be obtained in the 
investigations of photoelastic type. The quantity 
proportional to it is obtained numerically and represented 
by intensity mapping. The described analysis is based on 
fundamental results in [3, 4, 5], but requires substantial 
adaptation for the development of adequate mathematical 
model describing the complex interactions.  

Numerical model of the sub-element of the beam 
type 

The sub-element is a modification of the beam element 
presented in [1].  

The nodal variables are the transverse deflection of the 
layer of beam type v12, the tangential deflection of the 
lower surface of the layer of beam type u1 and the 
tangential deflection of the upper surface of the layer of 
beam type u2.  

Then:  
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where u is the tangential displacement of the middle 
surface of the layer of beam type, Θ is the angle of rotation 
of the normal to the middle surface of the layer of beam 

type, b is the half thickness of the layer of beam type. This 
gives the following expression: 
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where rx and ry are the components of the unit tangential 
vector of the composite beam, tx and ty are the components 
of the unit normal vector of the composite beam, u and v 
are the displacements of the middle surface of the layer of 
beam type in the directions of the x and y axes of the 
orthogonal Cartesian system of co-ordinates. Here: 
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where N1, … are the shape functions of the finite element. 
The subscript 1, … after the {} denotes that the 
corresponding quantities are taken at node 1, … ; s denotes 
the longitudinal coordinate of the axis of the composite 
beam; comma denotes differentiation with respect to the 
quantity following after it; [Nu] and [Nv] are the row 
vectors for interpolation of the tangential and normal 
displacements of the middle surface of the layer of beam 
type. Also: 
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where [NΘ] is the row vector for interpolation of the 
angular rotation of the normal to the middle surface of the 
layer of beam type. 

So, the mass matrix takes the form: 
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where: 
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and ρ is the density of the material of the layer of beam 
type, a is the half width of the composite beam. 
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The stiffness matrix takes the form: 
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where: 
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and E is the modulus of elasticity of the layer of beam 
type, G is the shear modulus of the layer of beam type, ks is 
the shear correction factor assumed equal to 1.2, the prime 
denotes differentiation with respect to the longitudinal axis 
of the composite beam. 

Numerical model of the sub-element of the elastic 
type 

The sub-element  of the elastic type is a modification 
of the plain stress element presented in [2].  

The nodal variables are the tangential displacement of 
the lower surface of the elastic layer u1, the transverse 
displacement of the lower surface of the elastic layer v1, 
the tangential displacement of the upper surface of the 
elastic layer u2, the transverse displacement of the upper 
surface of the elastic layer v2.  

Then: 
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where u and v are the displacements in the directions of the 
x and y axes of the orthogonal Cartesian system of co-
ordinates for the lower surface of the elastic layer when 
i=1 and for the upper surface of the elastic layer when i=2.  

Then: 
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where [N1u] and [N1v] are the row vectors for interpolation 
of the tangential and normal displacements of the lower 
surface of the elastic layer, [N2u] and [N2v] are the row 
vectors for interpolation of the tangential and normal 
displacements of the upper surface of the elastic layer. 

The interpolation of the displacements in the 
transverse direction of the elastic layer is given by: 
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where H=2b is the thickness of the elastic layer, t∈[0, H] 
is the transverse co-ordinate of the elastic layer.  

By taking into account that: 
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the mass matrix takes the form: 
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where ρ is the density of the material of the elastic layer. 
The expression for the strains in the elastic layer is 

given by: 
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where the subscript r denotes differentiation in the 
longitudinal direction of the composite beam. So, the 
following matrixes are introduced: 
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By taking into account that: 
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the stiffness matrix takes the form: 
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where: 
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and E is the modulus of elasticity of the elastic layer, ν is 
the Poisson’s ratio of the elastic layer, ks is the shear 
correction factor assumed equal to 1.2. 

Numerical model of the element of the composite 
beam 

The nodal variables are (Fig. 1) the transverse 
displacement of the lower layer of beam type v12, the 
tangential displacement of the lower surface of the lower 
layer of beam type u1, the tangential displacement of the 
upper surface of the lower layer of beam type u2, the 
transverse displacement of the upper layer of beam type 
v34, the tangential displacement of the lower surface of the 
upper layer of beam type u3, the tangential displacement of 
the upper surface of the upper layer of beam type u4.  

 

Fig. 1. The nodal variables of the composite beam 

The finite element is constructed by summation from 
the previously described sub-elements by taking the 
correspondence of the degrees of freedom into account. 

Numerical investigation of the circular elastic 
system 

The circular composite beam is analyzed. The eighth 
eigenmode is shown in Fig. 2.  

 
 

Fig. 2. The eighth eigenmode of the composite beam (the structure in 
the status of equilibrium is gray, the eigenmode is black) 

 
The ninth eigenmode is shown in Fig. 3.  
 

 
 

Fig. 3. The ninth eigenmode of the composite beam (the structure in 
the status of equilibrium is gray, the eigenmode is black) 

From the presented figures it is evident that the wave 
motion may be excited on those two modes. 

Numerical investigations of the Reynolds equation 
The problem is described by the equation [3]: 
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where x and y are orthogonal Cartesian coordinates and p 
is pressure. The gap is assumed to be in the direction of the 
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z axis of coordinates from z=0 to z=h. Then the velocity 
components u and v in the directions of the axes x and y are 
[3]: 
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where µ is the viscosity of the fluid. 
The shear strain rates are obtained on the basis of 

equation (21):  
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So, the averaged in the through thickness direction 
intensity of the shear strain rates is:  
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This indicates that the intensity in the photoelastic 
image may be considered to be proportional to:  
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The pressures are determined by solving the system of 
linear algebraic equations. 

The derivatives of the pressures at the points of 
numerical integration of the finite element are calculated in 
the usual way: 
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where {δ} is the vector of nodal pressures; px, py are the 
derivatives of pressure; [B] is the matrix relating the 
pressure gradients with the nodal pressures: 
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where Ni are the shape functions of the finite element. The 
pressures are continuous at interelement boundaries, but 
the calculated pressure gradients due to the operation of 
differentiation are discontinuous.  

The nodal values of pressure gradients are obtained by 
minimising the following errors: 
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where λ is the smoothing parameter; {δx} is the vector of 
nodal values of px; {δy} is the vector of nodal values of py; 
[N] is the row of the shape functions of the finite element; 
[B*] is the matrix of the derivatives of the shape functions 
for this problem coinciding with the matrix [B].  

 

 
a) 

 
b) 
 

Fig. 4. The calculated result represented by intensity mapping: a) 
without smoothing, b) with smoothing 

This leads to the following systems of linear algebraic 
equations for the determination of the nodal values of the 
gradients of pressure: 
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Then the required values given by Eq.24 are calculated 
and represented by intensity mapping of the type proposed 
in [6, 7].  

A rectangular domain is analyzed and the values of 
pressure on the left and the right boundaries are assumed 
equal to 1, while on the remaining boundaries they are 
assumed equal to 0. The results of calculations are 
presented in Fig. 4. 

Conclusions 
The finite element of a composite beam is constructed 

from the lower and upper sub-elements of the beam type 
and an internal sub-element of an elastic layer type. It is 
shown that the multiple eigenmodes exist in a circular 
system. They are suitable for the excitation of wave motion 
in it. 

The quantity proportional to the one obtained in the 
photoelastic investigations is calculated numerically and 
represented by the intensity mapping. The obtained results 
provide the basis for the investigation of devices 
incorporating the layer of the fluid when viscosity is 
important. 
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Spausdinimo įtaiso elementų tyrimas 

Reziumė 

Sudėtinio strypo baigtinis elementas sudarytas iš apatinio ir 
viršutinio strypinių subelementų ir vidinio tampraus sluoksnio 
subelemento. Gautos apskritiminės konstrukcijos savos formos tinkamos 
banginiam judesiui žadinti. 

Fototampriuose tyrimuose vaizdo intensyvumas gali būti laikomas 
proporcingu vidutiniam per storį šlyties deformacijų greičio 
intensyvumui. Jam proporcingas dydis gautas Reinoldso lygties 
skaitmeniniuose tyrimuose. Rezultatai taikytini tiriant įtaisus su klampaus 
skysčio sluoksneliu.  
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