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Introduction

Analysis of the dynamics of a contact pair of
impression and blanket cylinders in a printing device is a
complicated and multi-scale problem.

The dynamics of a plane circular composite beam is
analyzed in this paper. The beam is considered to have two
external layers of the beam type and an internal layer of the
type of an elastic body. The finite element of this beam is
obtained from the contributions of the three sub-elements:
two of them (the lower and the upper ones) of beam type
and the third (the internal one) of the type of an elastic
layer. The resulting finite element has six degrees of
freedom per node. The eigenmodes are calculated and it is
evident that the multiple eigenmodes enable the excitation
of wave motion in this system. The analysis is based on
[1,2].

The steady state incompressible viscous flow in a
narrow gap described by the Reynolds equation [3] is
analyzed. From the solution the shear strain rates may be
determined. The averaged in the thickness direction
intensity of the shear strain rates may be obtained in the
investigations of photoelastic type. The quantity
proportional to it is obtained numerically and represented
by intensity mapping. The described analysis is based on
fundamental results in [3, 4, 5], but requires substantial
adaptation for the development of adequate mathematical
model describing the complex interactions.

Numerical model of the sub-element of the beam
type

The sub-element is a modification of the beam element
presented in [1].

The nodal variables are the transverse deflection of the
layer of beam type Vj,, the tangential deflection of the
lower surface of the layer of beam type u; and the
tangential deflection of the upper surface of the layer of
beam type U,.

Then:
U; =u+bo,
U, =u—ho,
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where U is the tangential displacement of the middle
surface of the layer of beam type, @ is the angle of rotation
of the normal to the middle surface of the layer of beam
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type, b is the half thickness of the layer of beam type. This
gives the following expression:
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where I and ry are the components of the unit tangential
vector of the composite beam, t, and t, are the components
of the unit normal vector of the composite beam, U and v
are the displacements of the middle surface of the layer of
beam type in the directions of the x and y axes of the
orthogonal Cartesian system of co-ordinates. Here:
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where Ny, ... are the shape functions of the finite element.
The subscript 1, after the {} denotes that the
corresponding quantities are taken at node 1, ... ; S denotes
the longitudinal coordinate of the axis of the composite
beam; comma denotes differentiation with respect to the
quantity following after it; [N,] and [N,] are the row
vectors for interpolation of the tangential and normal
displacements of the middle surface of the layer of beam

type. Also:
N, }
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Ng|={0 —N; ——
Nol=|0 oM -5
where [Ng] is the row vector for interpolation of the
angular rotation of the normal to the middle surface of the
layer of beam type.
So, the mass matrix takes the form:

[M] J‘{[NU]TPF[NU]"‘[NVPPF[NV]"‘]dS’ 6)

Uy +uU,
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Then:
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where:
pF = pdab,
4ab’ ™)
ol = P

and p is the density of the material of the layer of beam
type, a is the half width of the composite beam.
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The stiffness matrix takes the form:

- [T S o T o1
(Mo J- [N, 7 s(No)- [N,

where:
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EF = Edab,
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and E is the modulus of elasticity of the layer of beam
type, G is the shear modulus of the layer of beam type, K; is
the shear correction factor assumed equal to 1.2, the prime
denotes differentiation with respect to the longitudinal axis
of the composite beam.

Numerical model of the sub-element of the elastic
type

The sub-element of the elastic type is a modification
of the plain stress element presented in [2].

The nodal variables are the tangential displacement of
the lower surface of the elastic layer u;, the transverse
displacement of the lower surface of the elastic layer v,
the tangential displacement of the upper surface of the
elastic layer U,, the transverse displacement of the upper
surface of the elastic layer v,.

P

Then:
up_ ) Ui + K
vy (ty

where U and Vv are the displacements in the directions of the

X and y axes of the orthogonal Cartesian system of co-

ordinates for the lower surface of the elastic layer when

i=1 and for the upper surface of the elastic layer when i=2.
Then:

(10)
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where [Ny,] and [Ny,] are the row vectors for interpolation
of the tangential and normal displacements of the lower
surface of the elastic layer, [N,,] and [Ny,] are the row
vectors for interpolation of the tangential and normal
displacements of the upper surface of the elastic layer.

The interpolation of the displacements in the
transverse direction of the elastic layer is given by:
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where H=2b is the thickness of the elastic layer, te[0, H]

is the transverse co-ordinate of the elastic layer.
By taking into account that:

H
H-tt, H
i H H 6’ "
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0 0
the mass matrix takes the form:
T o205 ]:
+ [N_ZF (2ap)2—6b [N_1]+
Ml=]| A (14)
+ [Nl]T (2a,o)T [N1 ]+
[T a2

where p is the density of the material of the elastic layer.
The expression for the strains in the elastic layer is
given by:

u u 0
H-t (1)r L (2)r +—<Vy =V (15)
H TR
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where the subscript r denotes differentiation in the
longitudinal direction of the composite beam. So, the
following matrixes are introduced:

[o]
[NZV]_[NIV] 4
[Nzu]_[Nlu]

[B]=

[Nlu
[B.]=| [o] | (16)
[va‘]
[N2u'
[B2]=| [o]
[NZV']
By taking into account that:
J‘—_tidt = j—idt :l’
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the stiffness matrix takes the form:



BT (D1 {8+ [&:] L [e]+
+[BT [D] [6:]+ BT [D1 8]+
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and E is the modulus of elasticity of the elastic layer, v is
the Poisson’s ratio of the elastic layer, kg is the shear
correction factor assumed equal to 1.2.

Numerical model of the element of the composite
beam

The nodal variables are (Fig. 1) the transverse
displacement of the lower layer of beam type Vj,, the
tangential displacement of the lower surface of the lower
layer of beam type U, the tangential displacement of the
upper surface of the lower layer of beam type u,, the
transverse displacement of the upper layer of beam type
Vi4, the tangential displacement of the lower surface of the
upper layer of beam type U;, the tangential displacement of
the upper surface of the upper layer of beam type u,.
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I
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Fig. 1. The nodal variables of the composite beam

The finite element is constructed by summation from
the previously described sub-elements by taking the
correspondence of the degrees of freedom into account.

Numerical investigation of the circular elastic
system

The circular composite beam is analyzed. The eighth
eigenmode is shown in Fig. 2.
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Fig. 2. The eighth eigenmode of the composite beam (the structure in
the status of equilibrium is gray, the eigenmode is black)

The ninth eigenmode is shown in Fig. 3.
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Fig. 3. The ninth eigenmode of the composite beam (the structure in
the status of equilibrium is gray, the eigenmode is black)

From the presented figures it is evident that the wave
motion may be excited on those two modes.

Numerical investigations of the Reynolds equation

The problem is described by the equation [3]:
02 p 0* p
2t 20
oX oy
where X and y are orthogonal Cartesian coordinates and p
is pressure. The gap is assumed to be in the direction of the

(20)
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Z axis of coordinates from z=0 to z=h. Then the velocity
components U and V in the directions of the axes X and y are

[3]:

:L@Z(Z—h),
24 OX @1
1 op
v=—-—2(z-h),
2p oy

where u is the viscosity of the fluid.
The shear strain rates are obtained on the basis of
equation (21):

ou 1 op
=—=——(2z-h),
Vxz 2 2,uax( )
(22)
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=—=—-—(2z-h).
Vyz o7 20y ( )
So, the averaged in the through thickness direction
intensity of the shear strain rates is:

h
T[22, 2
FJ. 7xz+7yzdz=
0

h 2 2
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This indicates that the intensity in the photoelastic
image may be considered to be proportional to:

2 2
BEo
X oy
The pressures are determined by solving the system of
linear algebraic equations.

The derivatives of the pressures at the points of
numerical integration of the finite element are calculated in

the usual way:
-l
Py

where {J} is the vector of nodal pressures; py, py are the
derivatives of pressure; [B] is the matrix relating the
pressure gradients with the nodal pressures:
Ny
OX
Bl=| N, |
oy
where N; are the shape functions of the finite element. The
pressures are continuous at interelement boundaries, but
the calculated pressure gradients due to the operation of
differentiation are discontinuous.
The nodal values of pressure gradients are obtained by
minimising the following errors:

%”‘ ([N ]{5x}_ px)2 +/{(85LXXJ2 +(%J2J dxdy =
= ([T d- pP + 21017 8T (7)o,

(23)
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where A is the smoothing parameter; { &} is the vector of
nodal values of py; {&} is the vector of nodal values of py;
[N] is the row of the shape functions of the finite element;
[B*] is the matrix of the derivatives of the shape functions
for this problem coinciding with the matrix [B].

Q)
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Fig. 4. The calculated result represented by intensity mapping: a)
without smoothing, b) with smoothing

This leads to the following systems of linear algebraic
equations for the determination of the nodal values of the
gradients of pressure:



[JINT N1+ [B =T 2lB+Jhxay - {5, } =
= [JINT pxay,
[N (N)+ [T B "Joeay - {5, )=
= _”[N I pydxdy.

Then the required values given by Eq.24 are calculated
and represented by intensity mapping of the type proposed
in [6, 7].

A rectangular domain is analyzed and the values of
pressure on the left and the right boundaries are assumed
equal to 1, while on the remaining boundaries they are
assumed equal to 0. The results of calculations are
presented in Fig. 4.

(28)

Conclusions

The finite element of a composite beam is constructed
from the lower and upper sub-elements of the beam type
and an internal sub-clement of an elastic layer type. It is
shown that the multiple eigenmodes exist in a circular
system. They are suitable for the excitation of wave motion
in it.

The quantity proportional to the one obtained in the
photoelastic investigations is calculated numerically and
represented by the intensity mapping. The obtained results
provide the basis for the investigation of devices
incorporating the layer of the fluid when viscosity is
important.
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K. Ragulskis, E. Kibirkstis, A. Bubulis, J. Ragulskiené, R. Maskelitinas
Spausdinimo jtaiso elementy tyrimas
Reziumé

Sudétinio strypo baigtinis elementas sudarytas i§ apatinio ir
virSutinio  strypiniy  subelementy ir vidinio tampraus sluoksnio
subelemento. Gautos apskritiminés konstrukcijos savos formos tinkamos
banginiam judesiui zadinti.

Fototampriuose tyrimuose vaizdo intensyvumas gali biti laikomas
proporcingu  vidutiniam per storj Slyties deformacijy grei¢io
intensyvumui. Jam proporcingas dydis gautas Reinoldso lygties
skaitmeniniuose tyrimuose. Rezultatai taikytini tiriant jtaisus su klampaus
skyscio sluoksneliu.
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