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Introduction

The dynamics of a structure in the state of plane stress
and also the problem of plate bending are analyzed in this
paper. The application of the static loading taking into
account the physical nonlinearity enables to control the
eigenfrequencies of the structure. The approximate method
of analysis is proposed:

1) first the linear static problem is solved and on the basis
of its solution the regions are determined in which
physical nonlinearity develops;

next the matrixes for the eigenproblem are obtained by
using the matrix of elastic constants of the nonlinear
problem for this region.

Thus, the eigenpairs influenced by nonlinearity are
calculated. It is evident that the eigenfrequencies may be
controlled by this approach [1, 2, 6, 7].

The method can be applied for determination of the
unknown  frequency of excitation by slowly
(quasistatically) changing the static load which produces
the known displacement of the loaded boundary of the
structure. When resonance vibrations take place, by
measuring the value of the static displacement of the
loaded boundary from the relationship of this displacement
with the first or some other eigenfrequency of the structure
one may determine the frequency of excitation.

The method can also be applied for determination of
the displacement of the loaded boundary of the structure
caused by the static load by slowly (quasistatically)
changing the frequency of excitation. When resonance
vibrations take place one knows their frequency as the
frequency of excitation and from the relationship of the
first or some other eigenfrequency with the displacement
of the loaded boundary this displacement caused by the
static load is thus indirectly determined.

This model is simplified as the geometrical
nonlinearity is not taken into account. It is a model of the
type of nonlinear elasticity which is considered as a first
approximation for taking plasticity into account.

2)

Investigation of the plain stress problem

The rectangular structure in the state of plane stress is
analyzed. The lower and upper boundaries are fastened and
the upper one is kinematically displaced in the upper
direction. The static problem is solved. The regions where
the equivalent stress [1]:
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is greater or equal than a predefined value are assumed to
be in a plastic state. Here oy, oy, 7y are the components of
stresses in the problem of plain stress. The statically
distorted mesh with the points of numerical integration in
the plastic region is shown in Fig. 1.

The stiffness and mass matrixes are calculated by
taking the elastic-plastic matrix of elastic constants for
those points of numerical integration that are in the plastic
region into account [1]:
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Fig.1. The statically distorted mesh with the points of numerical
integration in the plastic region

where D is the elastic matrix of elastic constants for the
problem of plain stress, E is the modulus of elasticity, Eris
the tangential modulus of elasticity in the plastic state,
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Thus the eigenpairs influenced by the physical
nonlinearity are calculated. The fifth eigenmode is shown
in Fig.2. The statically distorted mesh is gray while the
eigenmode is black.

Fig. 2. The fifth eigenmode (the statically distorted mesh is gray while
the eigenmode is black)

The equivalent stress:
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represented by intensity mapping of the type proposed in
[3] is shown in Fig. 3.

Better continuity is achieved by smoothing the stresses
and calculating the equivalent stress on their basis. The
equivalent stress represented by intensity mapping with the
application of smoothing is shown in Fig. 4.

Fig. 3 and 4 serve as an approximate reference for
judging about the possible shapes of the nonlinear
plasticity region.
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The stroboscopic moire fringes for the seventh
eigenmode are presented in Fig.5. The problem of their
interpretation is that the moire grating is regular in the
status of equilibrium. When the control parameter is non-
zero, the structure undertakes linear deformations what
distorts the grating. Only after this, the image of deformed
structure performing eigen vibrations is superimposed with
the image of the statically loaded structure. It can be noted
that such visualisation brings useful information about the
shape of vibrations but is not applicable for detection of
zones of plasticity in the analyzed structure.

The moire fringes obtained as a superposition of the
linear system and system undertaking physical nonlinearity
are shown in Fig.6. Such analysis does not bring into
account the shape of the eigenvibrations, but instead
provides an insight into the effect of nonlinearity.

Investigation of the plate bending problem

The rectangular plate of the thickness h is analyzed
using the element of the type described in [2]. The
components of the stresses 7,7, in the further analysis are
assumed to be small and related with the corresponding
components of the strains elastically. The lower and upper
boundaries are fastened and the upper one is kinematically
displaced in the direction of the z axis. The static problem
is solved. The regions of the surface of the plate where the
equivalent stress given by Eq.1 is greater or equal than a
predefined value are assumed to be in a plastic state. The
statically distorted mesh with the points of numerical
integration in the plastic state at the surfaces of the plate is
shown in Fig. 7. The mesh in the status of equilibrium is
gray, while the statically distorted mesh in the cavalier
projection [4, 5] with an angle g=74 is black.

Fig. 3. The equivalent stress represented by intensity mapping



ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004.

\\\\\ \\\ \\\\\\\\\\\\lnlnllllllmummf

Fig. 6. The moire fringes obtained as a superposition of the linear
system and the one taking the nonlinearity into account for the
\\ second eigenmode

IWWI II o , .
:::::mm., I ‘m ”” ” " ”m””“’;‘f;f.“ SESENEERNEENEmaE

g
L

HIHH

mm.’/ful l’m?"'ﬂ‘lll\\ \'\'\"""'" i

,'a':'mmllllllII|I|I|l|\\\\\\\\\\\\ N

points of numerical integration in the plastic region
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The stiffness and mass matrixes are calculated by
taking the elastic-plastic matrix of elastic constants for
those points of numerical integration that are in the plastic
region at the surfaces of the plate into account. The
thickness of the internal elastic layer h is determined. The
following notation is introduced:

Dep =D-Dr, (%)
where:
-
DT — EIEFO'(DFO') . (6)
—T L+FJDF,
E-Et

Then in the part of the stiffness matrix related with the
components of the stresses oy, oy, 7y the terms dependent
on the z coordinate are Dg, multiplied by z squared. This
results in:
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Thus the eigenpairs influenced by the physical
nonlinearity are calculated.

The equivalent stress given by Eq. 4 represented by
intensity mapping with the application of smoothing is
shown in Fig. 8. On the basis of this figure one can
approximately judge about the possible shapes of the
nonlinear region at the surfaces of the plate.

I

Fig.8. The equivalent stress represented by intensity mapping with
smoothing

Control of eigenfrequencies

Finally, the relation between the scaled
eigenfrequences and the control parameter (static shift of
the upper boundary) is presented in Fig. 9. It can be clearly
seen that though the eigenfrequencies start decreasing
around the same value of the control parameter, the slope
of different eigenfrequencies is quite distinct. It can be
noted that the value of the first eigenfrequency is scaled to
unity for better interpretability of results.
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It can be noted that though the presented control
methodology is well applicable for the first natural
eigenfrequency, but in practice this technique can be used
for higher modes in predefined ranges of frequencies thus
enabling the solution of advanced multi-body interaction
problems.
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Fig.9. The relationship of the eigenfrequency divided by the first
eigenfrequency with the displacement of the upper boundary
for the first seven eigenfrequencies

Conclusions

Numerical procedure for analysis of eigenmodes and
eigenfrequencies influenced by static physical nonlinearity
is proposed.

This method of statical control of eigenfrequencies on
the basis of physical nonlinearity is applicable in the
design of vibrational mechanisms.

It is shown that double exposure geometric moire
techniques are applicable for identification of zones of
plasticity.
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Savyjy daZniy statinio valdymo naudojant fizinj netiesiSkuma
principas

Reziumé

Pasitilyta supaprastinta skaitmeniné procediira savyjy reikSmiy
uzdaviniui spresti, kurioje jvertinama statinio fizinio netiesiskumo jtaka.
Nagrinéjamuoju metodu galima statiSkai valdyti konstrukcijos savuosius
daznius. Procedira taikoma ploks¢ios jtemptos biisenos bei plokstelés
lenkimo uzdaviniams sprgsti.
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