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Introduction 

The dynamics of a structure in the state of plane stress 
and also the problem of plate bending are analyzed in this 
paper. The application of the static loading taking into 
account the physical nonlinearity enables to control the 
eigenfrequencies of the structure. The approximate method 
of analysis is proposed: 
1) first the linear static problem is solved and on the basis 

of its solution the regions are determined in which 
physical nonlinearity develops; 

2) next the matrixes for the eigenproblem are obtained by 
using the matrix of elastic constants of the nonlinear 
problem for this region. 
Thus, the eigenpairs influenced by nonlinearity are 

calculated. It is evident that the eigenfrequencies may be 
controlled by this approach [1, 2, 6, 7]. 

The method can be applied for determination of the 
unknown frequency of excitation by slowly 
(quasistatically) changing the static load which produces 
the known displacement of the loaded boundary of the 
structure. When resonance vibrations take place, by 
measuring the value of the static displacement of the 
loaded boundary from the relationship of this displacement 
with the first or some other eigenfrequency of the structure 
one may determine the frequency of excitation. 

The method can also be applied for determination of 
the displacement of the loaded boundary of the structure 
caused by the static load by slowly (quasistatically) 
changing the frequency of excitation. When resonance 
vibrations take place one knows their frequency as the 
frequency of excitation and from the relationship of the 
first or some other eigenfrequency with the displacement 
of the loaded boundary this displacement caused by the 
static load is thus indirectly determined. 

This model is simplified as the geometrical 
nonlinearity is not taken into account. It is a model of the 
type of nonlinear elasticity which is considered as a first 
approximation for taking plasticity into account. 

Investigation of the plain stress problem 
The rectangular structure in the state of plane stress is 

analyzed. The lower and upper boundaries are fastened and 
the upper one is kinematically displaced in the upper 
direction. The static problem is solved. The regions where 
the equivalent stress [1]: 
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is greater or equal than a predefined value are assumed to 
be in a plastic state. Here σx, σy, τxy are the components of 
stresses in the problem of plain stress. The statically 
distorted mesh with the points of numerical integration in 
the plastic region is shown in Fig. 1.  

The stiffness and mass matrixes are calculated by 
taking the elastic-plastic matrix of elastic constants for 
those points of numerical integration that are in the plastic 
region into account [1]: 
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Fig.1. The statically distorted mesh with the points of numerical 
integration in the plastic region 

where D is the elastic matrix of elastic constants for the 
problem of plain stress, E is the modulus of elasticity, ET is 
the tangential modulus of elasticity in the plastic state, 
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Thus the eigenpairs influenced by the physical 
nonlinearity are calculated. The fifth eigenmode is shown 
in Fig.2. The statically distorted mesh is gray while the 
eigenmode is black.  
 

 
 

Fig. 2. The fifth eigenmode (the statically distorted mesh is gray while 
the eigenmode is black) 

 
The equivalent stress: 
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represented by intensity mapping of the type proposed in 
[3] is shown in Fig. 3.  

Better continuity is achieved by smoothing the stresses 
and calculating the equivalent stress on their basis. The 
equivalent stress represented by intensity mapping with the 
application of smoothing is shown in Fig. 4. 

Fig. 3 and 4 serve as an approximate reference for 
judging about the possible shapes of the nonlinear 
plasticity region. 

 
 

The stroboscopic moire fringes for the seventh 
eigenmode are presented in Fig.5. The problem of their 
interpretation is that the moire grating is regular in the 
status of equilibrium. When the control parameter is non-
zero, the structure undertakes linear deformations what 
distorts the grating. Only after this, the image of deformed 
structure performing eigen vibrations is superimposed with 
the image of the statically loaded structure. It can be noted 
that such visualisation brings useful information about the 
shape of vibrations but is not applicable for detection of 
zones of plasticity in the analyzed structure. 

The moire fringes obtained as a superposition of the 
linear system and system undertaking physical nonlinearity 
are shown in Fig.6. Such analysis does not bring into 
account the shape of the eigenvibrations, but instead 
provides an insight into the effect of nonlinearity. 

Investigation of the plate bending problem 
The rectangular plate of the thickness h is analyzed 

using the element of the type described in [2]. The 
components of the stresses τxz,τyz in the further analysis are 
assumed to be small and related with the corresponding 
components of the strains elastically. The lower and upper 
boundaries are fastened and the upper one is kinematically 
displaced in the direction of the z axis. The static problem 
is solved. The regions of the surface of the plate where the 
equivalent stress given by Eq.1 is greater or equal than a 
predefined value are assumed to be in a plastic state. The 
statically distorted mesh with the points of numerical 
integration in the plastic state at the surfaces of the plate is 
shown in Fig. 7. The mesh in the status of equilibrium is 
gray, while the statically distorted mesh in the cavalier 
projection [4, 5] with an angle ϕ=π/4 is black.  

 
 

F

 
 

Fig. 3. The equivalent stress represented by intensity mapping 
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Fig.4. The equivalent stress represented by intensity mapping with 
smoothing 

 
 

 
 

Fig. 5. The stroboscopic moire fringes for the seventh eigenmode 

 

 
 

Fig. 6. The moire fringes obtained as a superposition of the linear 
system and the one taking the nonlinearity into account for the 
second eigenmode 

 

 
 

Fig. 7. The mesh in the status of equilibrium (shown in gray) and the 
statically distorted mesh in the cavalier projection with the 
points of numerical integration in the plastic region 
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The stiffness and mass matrixes are calculated by 
taking the elastic-plastic matrix of elastic constants for 
those points of numerical integration that are in the plastic 
region at the surfaces of the plate into account. The 
thickness of the internal elastic layer he is determined. The 
following notation is introduced: 

 , (5) Tep DDD −=

It can be noted that though the presented control 
methodology is well applicable for the first natural 
eigenfrequency, but in practice this technique can be used 
for higher modes in predefined ranges of frequencies thus 
enabling the solution of advanced multi-body interaction 
problems.  

where: 
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Then in the part of the stiffness matrix related with the 
components of the stresses σx, σy, τxy the terms dependent 
on the z coordinate are Dep multiplied by z squared. This 
results in: 
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Thus the eigenpairs influenced by the physical 

nonlinearity are calculated.  

 

Fig.9. The relationship of the eigenfrequency divided by the first 
eigenfrequency with the displacement of the upper boundary 
for the first seven eigenfrequencies The equivalent stress given by Eq. 4 represented by 

intensity mapping with the application of smoothing is 
shown in Fig. 8. On the basis of this figure one can 
approximately judge about the possible shapes of the 
nonlinear region at the surfaces of the plate.  

Conclusions 
Numerical procedure for analysis of eigenmodes and 

eigenfrequencies influenced by static physical nonlinearity 
is proposed.  

 

This method of statical control of eigenfrequencies on 
the basis of physical nonlinearity is applicable in the 
design of vibrational mechanisms. 

It is shown that double exposure geometric moire 
techniques are applicable for identification of zones of 
plasticity.  
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Finally, the relation between the scaled 
eigenfrequences and the control parameter (static shift of 
the upper boundary) is presented in Fig. 9. It can be clearly 
seen that though the eigenfrequencies start decreasing 
around the same value of the control parameter, the slope 
of different eigenfrequencies is quite distinct. It can be 
noted that the value of the first eigenfrequency is scaled to 
unity for better interpretability of results. 

Savųjų dažnių statinio valdymo naudojant fizinį netiesiškumą 
principas  

Reziumė 
Pasiūlyta supaprastinta skaitmeninė procedūra savųjų reikšmių 

uždaviniui spręsti, kurioje įvertinama statinio fizinio netiesiškumo įtaka. 
Nagrinėjamuoju metodu galima statiškai valdyti konstrukcijos savuosius 
dažnius. Procedūra taikoma plokščios įtemptos būsenos bei plokštelės 
lenkimo uždaviniams spręsti. 

Pateikta spaudai 2004.03.01

 30



ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004. 

 

 31


