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Introduction 

The schematic diagrams of the printing machine and 
its elements are presented in [1]. One of the basic 
components of the printing machine is the printing 
cylinder. Various types of vibration and wave motions can 
take place in it. In this paper longitudinal waves in the 
printing cylinder are analyzed. They are understood as 
longitudinal from the point of view of the whole cylinder 
and its axis of symmetry. From the point of view of the 
surface element of the cylinder they are usually flexural. 
Another important problem in the analysis of the printing 
devices is investigation of the dynamics of the printing ink 
as a viscous fluid.  

The dynamics of an axisymmetric composite shell 
problem is analyzed in this paper. The axisymmetric shell 
is considered to have two external layers of higher stiffness 
and an internal layer of lower stiffness. The finite element 
of this axisymmetric shell problem is obtained from the 
contributions of the three sub-elements. The resulting finite 
element has six degrees of freedom per node. The 
eigenmodes are calculated and it is evident that the 
multiple eigenmodes enable the excitation of wave motion 
in this system. The analysis is based on [2, 3]. 

The problem of fluid flow control exploiting the 
vibrations of a flow boundary is important in the process of 
design of various engineering devices and optimization of 
processes of conveyance [10, 9, 7, 6]. Analysis of such a 
dynamical system requires development of adequate 
mathematical models and appropriate strategies for 
numerical modeling [11, 14, 5, 4].  

One of the specific precision engineering applications 
where vibrations play a key role in controlling a fluid flow 
is dosing and spraying of liquid materials. Particular 
interest exists for elastic catheter pipe type dosing 
equipment [9, 7, 12] where the application of piezoelectric 
actuators for the generation of standing waves in the outlet 
pipe can produce effects which can be used for the control 
of dosing process.  

Definite attention exists for the analysis of tube 
vibrations induced by internal or external flow [8]. 
Analysis of such vibrations is very important in many 
engineering applications including nano-tube vibrations.  

Nevertheless, analysis of an inverse problem – flow 
control by forced longitudinal and transverse vibrations of 
the tube itself is also of interest. Such a vibration based 
flow control methodology builds ground for the 
development of new types of liquid material dosing 
equipment. It is understood that full analysis of such 

complex problems requires construction of three 
dimensional models, but the analysis of such models and 
the interpretations of those results would be quite 
complicated.  

A two dimensional model is developed in this paper. 
The external excitation of the boundary by longitudinal 
vibrations is encountered through the boundary conditions 
of the flow of non-Newtonian fluid. Flow excitation by 
transverse vibrations of the tube is represented through the 
convective acceleration terms in the equation of dynamic 
equilibrium of the fluid flow in the cross section of the 
tube. The excitation velocities are assumed to be equal in 
the whole cross section area and are the functions of time 
only. The obtained results provide insight into the process 
of vibration based control of fluid flow. It is assumed that 
the boundary (the tube) is a non-deformable rigid body. A 
FEM model leads to the first order matrix differential 
equation. The approximate solution is sought using the 
modal decomposition and numerical integration of the one-
dimensional equations in the time domain. The developed 
procedure is applicable to tubes of various cross sections 
and the calculations can be effectively carried out for the 
required values of the parameters.  

The steady state two dimensional viscous 
incompressible slow flow is analysed. The element of the 
type described in [3] is used with the nodal variables being 
the velocity in the direction of the x axis and the velocity in 
the direction of the y axis and with the incompressibility 
condition introduced by the penalty method. The photo-
elastic analysis produces the intensity proportional to the 
intensity of the shear strain rate. For such problems in 
order to obtain acceptable strain rates conjugate 
approximation with eigen-smoothing is proposed. It is 
based on the approximation of each of the components of 
the strain rates by the first eigenmodes of the 
supplementary problem.  

Numerical model of the sub-element of the axi-
symmetric shell problem 

The sub-element is a modification of the axi-
symmetric element for the elastic body presented in [2, 3].  

The nodal variables are the tangential displacement of 
the lower surface of the elastic layer u1, the transverse 
displacement of the lower surface of the elastic layer v1, 
the tangential displacement of the upper surface of the 
elastic layer u2, the transverse displacement of the upper 
surface of the elastic layer v2.  

Then: 
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where u and v are the displacements in the directions of the 
x and y axes of the orthogonal Cartesian system of co-
ordinates for the lower surface of the layer when i=1 and 
for the upper surface of the layer when i=2, rx and ry are 
the components of the unit tangential vector of the 
composite shell, tx and ty are the components of the unit 
normal vector of the composite shell, here: 
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At the points of numerical integration of the finite 
element the transformation to the local directions is 
performed by the following matrix:  
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where r denotes the longitudinal co-ordinate of the axis of 
the composite shell.  

Then: 
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where [N1u] and [N1v] are the row vectors for interpolation 
of the tangential and normal displacements of the lower 
surface of the layer, [N2u] and [N2v] are the row vectors for 
interpolation of the tangential and normal displacements of 
the upper surface of the layer; N1, … are the shape 
functions of the finite element; the subscript 1, … after the 
{} denotes that the corresponding quantities are taken at 
node 1, ….  

The interpolation of the displacements in the 
transverse direction of the layer is given by: 
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where H is the thickness of the layer, t∈[0, H] is the 
transverse co-ordinate of the layer.  

By taking into account that: 
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the mass matrix takes the form: 
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where ρ is the density of the material of the layer and the 
value of x is calculated from: 
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where xi are the nodal x coordinates of the middle surface 
of the composite shell. 

The expression for the strains in the layer is given by: 
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where the subscript r denotes differentiation in the 
longitudinal direction of the composite shell and the values 
of rx and tx are determined from Eq 3. So the following 
matrixes are introduced: 
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where the value of x is calculated from Eq. 8, the prime 
denotes differentiation with respect to the longitudinal axis 
of the composite shell. 

By taking into account that: 
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the stiffness matrix takes the form: 
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where Kv is the modulus of volumetric compressibility of 
the layer, G is the shear modulus of the layer, ks is the 
shear correction factor assumed equal to 1.2 and the value 
of x is calculated from Eq.8. 
 

Numerical model of the element of the 
axisymmetric shell problem 

The lower and the upper layers are assumed to be stiff 
and thin. For such a stiff and thin layer the transverse 
displacements of its lower and upper surfaces are assumed 
to be mutually equal. The nodal variables are the 
transverse displacement of the lower layer v12, the 
tangential displacement of the lower surface of the lower 
layer u1, the tangential displacement of the upper surface 
of the lower layer u2, the transverse displacement of the 
upper layer v34, the tangential displacement of the lower 
surface of the upper layer u3, the tangential displacement 
of the upper surface of the upper layer u4.  

The finite element is constructed by summation from 
the previously described sub-elements by taking the 
correspondence and mutual equality of the degrees of 
freedom into account. 

Numerical investigation of the wave motion 
The composite shell of constant radius with the 

displacements of the first node equal to the displacements 
of the last node (periodic boundary conditions) is analyzed. 
The eighth eigenmode is shown in Fig. 1. 

The ninth eigenmode is shown in Fig. 2. From the 
presented figures it is evident that the wave motion may be 
excited on those two multiple modes. 

 
 

 
 

Fig. 1. The structure in the status of equilibrium and the eighth eigenmode of the composite shell 

 

 
 

Fig. 2. The structure in the status of equilibrium and the ninth eigenmode of the composite shell 

 
Transient processes of vibration supply of fluid 

The orthogonal Cartesian coordinate system is defined 
where the z axis is parallel to the axis of the tube. It is 
assumed that the velocity of fluid flow in the direction of 
the flow is the function of the coordinates of the cross 
section and time, while the components of velocity in the 
plane of the cross section are given functions of time only, 
that is, 

 ( ) ( ) ( )tyxwwtvvtuu ,,  ,  , === , (14) 

where u, v, w denote the velocity components in the 
direction of the Cartesian orthogonal axes of coordinates, t 
is the time. It is assumed that the cross section of the tube 
does not vary with the z coordinate.  

Thus the incompressibility condition of the flow is 
identically satisfied. In this case the stresses take the form: 

σx = σy = σz = −p,  
σxy = 0,  
σyz = µwy,   (15) 
σzx = µwx,  
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where p denotes the pressure, µ is the viscosity of the fluid, 
the subscripts denote partial derivatives.  

The dynamic equilibrium equation in the direction of 
the z axis takes the form (taking into account the full 
derivative of w): 
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where ρ is the density of the fluid, g is the acceleration of 
gravity, pz is the gradient of the pressure in the direction of 
the z axis. 

It is assumed that the fluid is non-Newtonian and the 
viscosity is expressed like: 

 22
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where µ1 and µ2 are constants.  
The boundary condition takes into account the 

longitudinal vibration of the tube: 

−µwn = α(w − w*), (18) 

where n is the outward normal vector to the boundary of 
the cross section of the flow, α is the coefficient of 
slippage (sliding friction between the fluid and the surface 
of the tube) and w*

 is the velocity of the wall in the 
direction of the z axis. It is assumed that the boundary is a 
round circle and performs harmonic oscillations. The 
appropriate components of the vibration vector are 
expressed like: 
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where a, b and c denote the amplitudes of oscillations and 
ω denotes the frequency of oscillations.  

So the problem is described by Eq. 16 taking into 
account Eq. 17 and the boundary condition Eq. 18. µ1, µ2, 
− pz+ρg, ρ, α are constant quantities.  

The following non-dimensional quantities are 
introduced: 
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where the top sign denotes the corresponding non-
dimensional quantity, R is the radius of the tube, W is the 
characteristic velocity, P is the standard atmospheric 

pressure, 
ω
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The equation of motion (Eq. 16) after taking into 
account Eq. 17 takes the following form: 
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In the non-dimensional form: 
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where the Strouhal number is 
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The boundary condition (Eq.18) after taking into 
account Eq. 17 takes the following form: 
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where nx and ny are the direction cosines of the outward 
normal of the boundary of the cross-section of the tube. In 
non-dimensional form: 
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where the slippage number is 
Wρ
α

=Sl . 

First a finite element formulation of this problem is 
developed which gives the first order matrix differential 
equation. The cross section of the flow is meshed using the 
finite element approximation. The resulting matrix 
differential equation 

 [ ]{ } [ ]{ } { }FKC =+ δδ& , (25) 

is obtained on the basis of the Galerkin method of 
weighted residuals [13] and the FEM matrixes take the 
form: 
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where {δ} is the vector of nodal velocities. The upper dot 
in Eq. 25 denotes differentiation with respect to time; s is 
the boundary line of the cross section of the flow 
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where N1, N2 ... are the shape functions of the finite 
element in the cross section of the flow, M1, M2 ... are the 
shape functions of the finite element on the boundary of 
the cross section of the flow. Also in the expression of {F} 
in Eq. 26 wx and wy are determined from: 
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The vector {δ} in the expression of {F} in Eq. 26 and 
in Eq. 28 is taken from the previous time step while 
numerically integrating the matrix differential equations. 

The first eigenpairs of the homogeneous system 
following from Eq. 25 are determined. Zero initial 
conditions are assumed. Numerical integration of the one-
dimensional modal equations is performed by the constant 
average velocity integration scheme of the Newmark type. 

Finally, the mass flow rate is found by integrating over 
the cross sectional area: 

 , (29) ( )∫∫= dxdyyxwQ ,ρ

where w(x,y) are the transverse velocities. They are 
calculated from {δ} by using the shape functions of the 
appropriate finite elements.  

By introducing the non-dimensional quantity: 
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where Qs denotes the standard mass flow rate, Eq. 29 is 
represented in the non-dimensional form: 
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The cross-section of the tube is assumed to be a circle. 
One fourth of the circular region is analyzed by taking the 
symmetries with respect to the axes of coordinates into 
account. The characteristics of the non-Newtonian fluid are 
assumed to represent a liquid type suspension:  
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Radius of the tube R = 10 mm. Also a = b = 0 mm;       
c=8 mm; ω = 2 rad/s. 

 

Numerical integration of the finite element equations 
shows the effect of increase of average mass flow rate due 
to vibrations (Fig. 3). 

For another problem the characteristics of the fluid are 
assumed to represent a liquid type suspension:  
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Radius of the tube R = 10 mm. The excitation is assumed 
in the direction of the x axis (a=6 mm; b= c =0 mm;      
ω=2 rad/s). 

 

 

Fig.3. Mass flow rate (g/s) without vibration excitation and with 
vibration excitation 

Numerical integration of the finite element equations 
shows the effect of decrease of the mass flow rate due to 
the vibrations of the tube (Fig. 4). 

 

Fig.4. Mass flow rate (g/s) without vibration excitation and with 
vibration excitation 

Photo-elastic investigation of viscous fluid flow  
Fluid flow problems are studied by utilizing the effect 

of flow birefringence. Two dimensional laminar flow is 
analyzed. Birefringence is related to the deformation of 
ordinarily optically isotropic particles or is caused by the 
orientation of geometrically and optically an-isotropic 
particles. In both cases birefringence is related to the shear 
strain rate. Birefringence is taken as the integrated value 
through the light path. Boundary effects of the walls 
perpendicular to the light beam are not evaluated. The 
suspension used for photo-elastic investigations exhibits 
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non-Newtonian flow characteristics so it is desirable to 
perform the analysis in the low shear rate quasi-Newtonian 
region at low Reynolds numbers. 

The velocities of the fluid are calculated by using the 
conventional formulation common in the finite element 
analysis [3]. The strain rates at the points of numerical 
integration of the finite element are calculated in the usual 
way [3]: 
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where {δ0} is the vector of nodal velocities; [B] is the 
matrix relating the strain rates with the nodal velocities; εx, 
εy, γxy are the components of the strain rates. The velocities 
are continuous at inter-element boundaries, but the 
calculated strain rates are discontinuous due to the 
operation of differentiation.  

The following systems of linear algebraic equations 
for the determination of each of the components of the 
strain rates using the conjugate approximation [15] are to 
be solved: 
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where {δx} is the global vector of nodal values of εx; {δy} 
is the global vector of nodal values of εy; {δxy} is the global 
vector of nodal values of γxy; [N] is the row of the shape 
functions of the finite element. The integration operators 
include integration over the elements and the direct 
stiffness procedure. 

In order to obtain sufficiently smooth results the 
components of the strain rates are expanded using the first 
eigenmodes of the supplementary problem. This problem 
is the eigenproblem for the two-dimensional wave 
equation. The first eigenmodes of this problem are denoted 
as { } { },..., 21 δδ  and their matrix is: 

 [ ] { }{ }[ ...21 ]δδ=∆ . (34) 

The coefficients of expansion  of a component of 
the strain rate with the nodal values 

{ }z
{ }δ  are obtained from: 

 , (35) [ ] [ ]{ } { }zMT =∆ δ

where  is the mass matrix of the supplementary 
problem. In our case we have: 

[ ]M

  (36) 
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where  are the coefficients of expansion of ε{ }xz x; { }yz  

are the coefficients of expansion of εy; { }xyz  are the 

coefficients of expansion of γxy.  
In the photo-elastic image the intensity is proportional 

to the intensity of the shear strain rate: 

 ( ) 2222
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xyyxyx γεεεε +++− . (37) 

The rectangular region with the components of the 
velocities prescribed on the boundaries is analyzed. The 
prescribed velocities on the boundaries are everywhere 
zero, except the velocities in the direction of the y axis at 
the nodes in the middle of the lower and upper boundaries, 
where they are assumed to be equal to one. The 
reconstructed photo-elastic image by using 8 eigenmodes 
of the supplementary problem and represented by the 
intensity mapping proposed in [16] is shown in Fig. 5.  

 

 
 
Fig. 5. Photo-elastic image represented by intensity mapping 

In this problem concentration of the strain rate at the 
loading points takes place. The mesh is too coarse to 
represent the results there. The proposed eigen-smoothing 
procedure produces interpretable results according to 
which qualitative correspondence with the photo-elastic 
experiment may be expected. 

Conclusions 
The finite element of the axi-symmetric composite 

shell problem is constructed. It is shown that the multiple 
eigenmodes exist in an analyzed periodic system. They are 
suitable for the excitation of wave motion in it. 

The mathematical model describing the motion of 
fluid in a tube performing vibrations is developed. The 
velocity of the longitudinal motion of the walls is taken 
into account through the boundary condition. Transverse 
motions are incorporated through the convective inertia 
terms. The results of the analysis show that the transverse 
vibrations decrease the mass flow rate, while the 
longitudinal vibrations increase it. Thus the change of the 
mass flow rate caused by one of the types of vibrations can 
be compensated by the vibrations of another type. 

For the analysis of viscous fluid flow the velocity 
based formulation is coupled with the photo-elastic 
analysis based on the intensity of the shear strain rate. The 
procedure of conjugate approximation with eigen-
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smoothing enables generation of photo-elastic images with 
acceptable quality.  
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Spausdinimo įtaiso elementų dinamika 

Reziumė 

Ašiasimetrio sudėtinio kevalo uždavinio baigtinis elementas 
sudarytas iš sluoksnių subelementų. Periodinės konstrukcijos savosios 
formos tinkamos banginiam judesiui žadinti. 

Sudarytas skysčio judesio virpamąjame vamzdyje skaitmeninis 
modelis. Analizės rezultatai parodo, kad skersiniai virpesiai mažina 
pratekančio skysčio kiekį, o išilginiai didina. Todėl vieno tipo virpesių 
sukeltas skysčio srauto pasikeitimas gali būti kompensuotas kito tipo 
virpesiais. 

Klampaus skysčio tekėjimo analizėje kaip mazginiai kintamieji 
imami greičiai. Fototampriems vaizdams, besiremiantiems deformacijų 
greičiais, gauti pasiūlyta glotninimo metodika. 
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