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Introduction 

The operational principle of wave vibrodrive is based 
on friction interaction of an input link in which a high 
frequency traveling wave oscillation are excited with an 
output link [1, 2, 3]. The character of motion of the output 
link is determined by the vibration character of the input 
link, external resistance forces, the shape of contacting 
surfaces, etc. 

The results of analytical investigation of a wave 
vibrodrive with a ring shape exciter which contacts the 
output link by a point in case of kinematic excitation are 
presented. 

Vibrations of mechanical system in which a dry 
friction is present are described by nonlinear differential 
equations. The feature of motion of such systems is that 
due to nonlinear influence of a dry friction, the motion of 
the links can be separated into different phases. The 
motion of the phases is described by different easily 
integrated differential equations. The differential equations 
describing the motion of nonlinear systems are mainly 
used for the determination of transition instant from one 
phase to another. 

Taking this into account, the dynamical model of the 
vibrodrive can be represented by a simplified nonlinear 
(quasilinear) mechanical system and the differential 
equations describing its motion can be solved applying so 
called method of junction [4, 5].  

The essence of this method is that a nonlinear 
mechanical system in separate phases of its motion is 
analysed as linear. 

For the solutions of each phase such constants of 
integration are selected that the solutions of adjacent 
phases would transit to each other fluently. In general 
solution the constants of the first phase are determined 
from the initial conditions of the process. The end values 
of the first phase coordinates and velocities are used as 
initial conditions of the second phase and so on. The 
calculation is performed till the steady state is obtained or 
it is approached with necessary accuracy. 

The feature of the steady state is that in each phase 
there are two instants in the time domain when the velocity 
becomes equal zero. If in time the steady motion 
approaches some limit motion, the later with a great 
probability can be considered as a asymptotically stable 
motion. 

Theoretical investigation of the steady state 
motion 

Wave vibrodrive is described by a simplified 
dynamical model which consists of an absolutely rigid 

particle 1 moving according the defined law and, output 
link 2 which is pressed to the input link 1 and which can 
perform motion (see Fig.1) in one direction. The case 
under investigation is when the output link 2 performs 
translation. 
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Fig.1. Kinematic scheme of wave vibrodrive: 1 – input link; 2 – 
output link 

The input and output links interact in the place of their 
contact by the forces of sliding friction. The input link 1 
moves by an elliptic trajectory, which is described by the 
following equations:  

 ( )0sin A   ψω += tX , 
 tω cos B = Y , (1) 

here X, Y coordinates of the ellipsis, A, B amplitudes of the 
vibrations, ω – angular frequency of the vibrations, 0ψ –

phase shift (in order to compare analytical investigations it 
is assumed to be zero). 

When determining the forces of sliding friction only 
the dry friction force appearing at the contact point of the 
input and output links is taken into account. 

The force of the dry friction F1 
equals ( )XZfF &&-sign  N   01 = , here Z is the coordinate of 
the output link 2.  

Normal reaction N=MΫ + F, here F is the pressing 
force of the output link 2 to the input link 1, M is the mass 
of the output link 2. 

When moving the output link 2 is effected by the 
inertia force ZM && , the resistance force F2 equals F2 = H0 
signŻ, here H0 is the coefficient of dry friction, resisting 
the motion of output link 2.  

The force of viscous friction F3 equals F3 = HŻ. 
When there is the contact and Y0= Y, the motion of the 

output link 2 is described by the following equation: 
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 , (2) 0 = )(sign   + sign  + + 00 X - ŻNfŻHHŻZM &&&

here Y0 is the coordinate of the output link 2 with respect to 
the input link 1. 

The following dimensionless designations are 
introduced into the formulas:  

 x = 
A
X ,  y = 

A
Y ,  z = 

A
Z ,  l = 

A
B , h = 

M
H
ω

, 

 h0 =
MA

H
2ω

,  f =
MA

F
2ω

, ωτ = t. (3) 

In the following investigations it is assumed that ż>0.  
Then differential Eq. 2 can be written in dimensionless 

form: 
 0 =)(sign  ) +lcos (- + 00 x - zffh + zh + z ′′′′′ τ&  (4) 

It is differentiated with respect to the new 
dimensionless variableτ. 

The Eq. 4 of motion of the vibrodrive is solved 
applying the so called method of junction [4]. In general 
case for different types of motion two types of slipless 
contact motion and two types of slipping contact motion 
are possible. 

The motion is of the first type when ,iττ =  xz ′=′ . 
The second type motion is contact sliding motion, 

when ( ) 0,, 1 <′−′∈ + xzii τττ . 
The coordinate and velocity of the output link 2 are 

determined from the equation: 
 τcos  n + m - = hz' + z" , (5) 

here coefficients m=h0-f0f, n = - f0 l. In this case the input 
link surpasses the output link 2. 

The third type of motion is analogous to the first one 
i.e. when xzi ′=′= + ,1ττ . 

The fourth type of motion is contact sliding motion 
when ( ) 0,, 21 >′−′∈ ++ xzii τττ . 

The coordinate and the velocity of the output link 2 for 
this type of motion are determined taking into account the 
following coefficients: m1= h0 + f0⋅f, n1= f0⋅l. 

In this case the velocity of the output link 2 is greater 
than the velocity of the input link 1. 

In a general case, for the first and third types of motion 
i.e., when iττ = , 1+= iττ , the coordinate and the velocity 
of the output link 2 are determined from the following 
equations: 

 z1= z0 ( )τ +sin τ , τcos=′iz . (6) 

For the second type of motion, when ( )1, +∈ ii τττ , the 
coordinate and velocity of the output link 2 are: 
z = C - Di i ( i )ττ − - Eexp[ -h ( )iττ − ] + Fsin τ - Gcosτ , 

iz′ = -D+hE exp[-h(i τ -τ i )]+ Fcosτ +Gsinτ  (7) 

and at the end of interval: 
( ) ( ) ( )[ ]+−−−−−= +++ iiiiiii hEDCz τττττ 111 exp  

+Fsin τ 1+i  - Gcos τ 1+i , (8) 

( 1+′ iiz )τ =-B+hEexp[-h ( )ii ττ −+1 ]+ 
Fcosτ 1+i +Gsinτ 1+i , 

where 

Ci= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

1
1

2
1

h
n

h
cosτ i+ i

hh
nnnh τsin

)1(
)(1 2

1
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−−
+ - 

- ( )ih
hh
n

h
m τ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
− exp

)1( 2
1

2
1 -

h
m1 τ i + 2

1

h
mm +

, 

 E= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

1
1

2h
n

h
cos τ i - ( ) i

hh
n τsin

12 +
+ 2h

m
, 

D= ,
h
m G= ,

12
1

+h
n

F=
12

1

+h
hn

. (9) 

For the fourth type of motion, when ( )21, ++∈ ii τττ , 
the coordinate and the velocity of the output link are: 

11 ++ = ii Cz -D1 ( )1+− iττ -E exp1+i ( )[ ]1+−− ih ττ + 

       + F1sinτ -G1cosτ , 

 1+′iz =-D1+hEi+1exp ( )[ ]1+−− ih ττ + 

+F1cosτ +G1sinτ , (10) 
and at the end of interval: 

 ( )21 ++ iiz τ =Ci+1-D 1 ( )12 ++ − ii ττ -
Ei+1exp ( )[ ]12 ++ −− iih ττ + 

+F1sin τ i+2-G1cosτ i+2, 

( )21 ++′ iiz τ = -D 1 + hEi+1exp ( )[ ]12 ++ −− iih ττ + 

+ F 2121 sincos ++ + ii G ττ , (11) 
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After a certain number of the output link motion stages 
the output link 2 performs a steady state motion or 
approaches this motion regime.  

If in time the steady state motion approaches certain 
limit type motion, the later can be called an asymptotically 
stable motion. That’s why by the so called junction 
method, which shows the sequence of the steady state 
motion, it is possible to find out the steady state motion 
parameters.  

It is considered that the steady state motion is 
determined by the following parameters: 

 iτ = 1, +iτϕ = δϕ + , 2+iτ =2 ϕπ + , z =0, i
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 zi= =v, z2+′iz i+2=s. (12) 

The parameters of the steady state motion S,,, νδϕ  
are obtained using the solutions of the four type equations 
of motion. 

Taking into account (Eq. 12), Eq. 6÷11 will become: 
 ϕcos=v , 

 0sin)( =+ ϕτz , 
)cos(G)sin(F)hexp(EDCz ii δϕδϕδδ +−++−−−=+ 11

)sin(G)cos(F)hexp(hEDz ii δϕδϕδ ++++−+−=′+1  
),cos(zi δϕ +=′+1  

[ ]+−−−−−= +++ )(hexpE)(DCz iii δπδπ 22 1111  
+ ϕϕ cossin 11 GF − , 

[ ] ϕϕδπ sinGcosF)(hexphECz ii 11111 2 ++−−+−=′ ++ , 

ϕcosvzi ==′+2 .  (13) 
From Eq. 13 the equations for the determination of 

steady state motion parameters are obtained: 
-D+hEiexp 0)sin()cos()1()( =+++−+− δϕδϕδ GFh , 
-Di ( )[ ] 0sincos)1(2exp 11 =+−+−−+ + ϕϕδπ GFhhEi , 

v= cosϕ , 
 S= [ ]+−−−−− ++ )2(exp)2( 111 δπδπ hEDC ii  

ϕϕ cossin 11 GF −+ .  (14) 
Not all the regimes obtained from Eq. 14 can be 

applied and not all of them are stable. 
The condition of existence of the steady stable motion 

regime is the possibility to obtain the solution for Eq. 14. 
In order to determine which ones of the steady state 

regimes are stable it is necessary to solve the equations 
varying the parameters close to the steady state regime. If 
the solutions of differential equations after parameter 
variations are going down, such a regime is stable. In the 
opposite case, not stable. 

,ϕϕτ ∆+=i  1i+τ = δδϕ ∆++  

ii ττ −+1 = ϕδδ ∆−∆− , 2+iτ = ϕρϕπ ∆++2 , 

12 ++ − ii ττ = δϕ δρπ ∆−−∆+2 , , ν∆+=′ vzi

vi vz ∆+=′+ ρ2 , , (15) ziz ∆=′

here , , ,  are the variations; ρ is the 
characteristic parameter. 

ϕ∆ δ∆ v∆ z∆

If 1<ρ , the analyzed regime is stable, if 1>ρ , – 
unstable. 

The analysis of the equations of motion of the links 
was performed when the output link is in translation. 

Criteria according which the quality of a vibrodrive 
can be determined are the following: losses of energy 
because of friction in the contact place of the input and 
output links, the power of those losses, the useful work of 
the output link, its average velocity, motions, non-
uniformity of motion, etc. These criteria are determined 
when the vibrodrive motion is in steady state. 

Losses in the contact zone: 
  (16) ( ) ( X-ZX-ZF)+YMfP &&&&&& sign( = 0 ⋅ )

or  
 . (17) pMAfP ⋅= 22

0 ϖ

here ( )( ) ( xzsignxzfyp n ′−′′−′+= )

)

. 
Losses of the energy in the contact zone because of a 

dry friction are given by: 

 , (18) fr

T

fr MAfPdtA
n

αω 22
0

0

== ∫
or 

 , (19) ( )( ) ( )∫ ′−′′−′+=
nT

n
fr dxzsignxzfy

ω

τα
0

where Tn is the steady state motion period. 
The useful work: 

  (20) (   sign  ) (   A
nT

0
0n ∫ += dtZZHZH &&&&

or 
 An= A2M nαω 2 , (21) 

here 

 . ( )   sign   
nT

0
0n ∫ ′′+′=

ω

τα dzzh  zh

The efficiency is 
 ααααη +⋅+= frnn f0 , (22) 

where α are the energy losses because of the elastic 
deformation of the input link. When calculating η , they 
are neglected, i.e. α=0. 

The average velocity 
 zz ′⋅′= ω& , (23) 

where  

∫ ′=′
nT

n
dz

T
z

ω

τ
ω

0

1 . 

The non-uniformity coefficient of the motion is given 
by 

 ( ) zzzzz ′′−′=′= 2minmaxδδ & , (24) 
where minmax , zz ′′  are the maximal and minimal velocities 
of the output link, respectively. 

Dynamic characteristics of the vibrodrive when its 
motion is in steady state are shown in Fig. 2-6. 
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Fig.2. Dependencies of average velocity z ′ , efficiency , and non-

uniformity coefficient of motion 

η
δ  versus frequency 
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( max/ωω ): 1 – z ′ ; 2 – η ; 3 – z′δ , ψ 0 = 0.01, h=0.05, 

h0=1, f=8ּ10 , f
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Fig 3 Dependencies of average velocity z′ , efficiencyη , and non 

uniformity coefficient of motion tz′δ  on dry friction 
coefficient f0: 1 – z′ ; 2 – η ; 3 – z′δ , h=0.05, h0=0,01, 

f=8ּ10 , =0,5; 
5−

max/ωω ψ 0 = 0.01 
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Fig.4. Dependencies of average velocity z ′ , efficiency η , and non 

uniformity coefficient of motion z′δ  versus pressing force f:      

1– z ′ ; 2 – η ; 3 – z′δ , 0ψ =0,01, h=0.05, h0=0,1, f0=0,05, 

max/ωω = 0,5 
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Fig.5. Dependencies of average velocity z ′ , efficiency η , and non 

uniformity coefficient of motion z′δ  versus the output link 

mass M/Mmax: 1 – z ′ ; 2 – η ; 3 – z′δ , 0ψ =0,01, h=0.05, 

h0=0,1, f0=0,05, f =8ּ10-5, max/ωω = 0,5 
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Fig.6. Dependencies of average velocity z ′ , efficiency η , and non 

uniformity coefficient of motion z′δ  on phase shift ψ 0: 1 – 

z ′ ; 2 – η ; 3 – z′δ , h=0.05, h0=0,1, f0=0,05, f=8ּ10-5, 

max/ωω = 0,5. 

Conclusions 
The wave vibrodrive is presented as a simplified 

model of a nonlinear oscillating system. 
Analytical expressions for the description of a steady 

state motion of the vibrodrive links are obtained when the 
links do not rebound from each other. The conditions of 
the steady state motion existence are indicated. Performing 
the analysis of differential equations of the links motion 
the main characteristics of the vibrodrive are determined. 
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G. Baurienė, L. Patašinė, K. Pilkauskas 

Banginių vibropavarų nusistovėjusio judėsio režimo tyrimas 

Reziumė 

Pateikti banginės vibropavaros su žiediniu žadintuvu, 
kontaktuojančiu su išėjimo grandimi tašku, dinamikos analitinių tyrimų 
rezultatai, esant kinematiniam žadinimui. Netiesinės išėjimo grandies 
judesio diferiancialinės lygtys išspręstos prijubgimo metodu. Ištirti 
vibropavaros keturių tipų judesiai: du kontaktiniai neslystamieji ir du 
kontaktiniai slystamieji judesiai. Gauta transcendentinių lygčių sistema 
nusistovėjusio judesio parametrams nustatyti. 
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