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Introduction 

It is known that lift cabins in spite of their quiet 
movement in the elevation shaft still cause certain a low-
frequency noise. The emission of vibrations due to lift 
constructions in the partitions of buildings are transferred 
to adjacent premises and radiates the undesirable noise. 
Theoretical and experimental research conducted by our 
and previous authors showed that constructions of a 
cylindrical shape insulate well a low-frequency noise 
propagating from inside [1, 2, 3, 4]. The application of 
cylindrical shells and housings in the designing of 
residential and public buildings open the opportunity for 
insulation of an unpleasant noise that is radiated by the 
modern technical facilities used, for example, lift for 
elevating people and cargo. 

In this paper, we shall deal with theoretical aspects that 
under certain conditions would provide an opportunity to 
evaluate the efficiency of the recommended construction in 
terms of noise reduction. In dependence on the situation 
where the recommended construction will be implemented, 
several different methods of calculation may be applied. In 
multi-apartment houses, lift shafts may be of several tenths 
meters, and our recommended calculation methods may be 
applied according to the sound excitation principle and its 
propagation in the cylindrical housing.  

Theory of sound insulation of a cylindrical 
housing 

Vibration of lift shaft walls may be represented as a 
sum of normal waves propagating through it. These waves 
emit a noise into the surrounding space in a nonuniform 
manner: for the same amplitudes, the emission declines 
quickly with the growth of the azimuth number n. This is 
related to the fact that with an increase in n the distance d 
between adjacent wall sections oscillating in counterphase 
is decreasing. If d is significantly less than the wavelength 
λc in the surrounding medium, than the emission of those 
sections is mutually compensatory, since they oscillate in 
opposed phases, and the phase overlap between them due 
to the difference in beam course is small. If, however, d 
>> λc, then those sections are good emitters of noise. In 
other words, small-scale (d < λc) wall oscillations are 
significantly worse emitters of a noise than the large-scale 
(d > λc) ones. At n = 0, all the points of the cabin located 
on a circumference vibrate in phase. The nature of noise 
emission in that case is determined by the lengths of the 
waves propagating along the pipe. As a rule, they are 
emitted into the surrounding space rather well. At n = 1 all 
the points located at the ends of a diameter have radial 
velocities of opposite phases. Therefore, the nature of 

emission is determined by the cross sectional dimensions 
of the pipe. At n = 1 the number of cabin sections along 
the circumference, which vibrate in opposite phases, grows 
with n and, therefore, effectiveness of a noise emission by 
those waves is low. In practice, the emission becomes 
noticeable either at high frequencies or in large diameter 
shells. 

Soundproofing of covers for radial-symmetrical 
vibrations of pipelines was described in our works [5]. Let 
us examine here the case when n = 1. The presented 
problem can be solved by the same means as for the case 
when n = 0, with similar results. However, the expression 
for the cover impedance has rather complex, what 
complicates the analysis. Let us approach the problem in a 
different way. 

It was demonstrated in the paper [6] that a system of 
equations of motion for a cylindrical shell at n = 1 can be 
reduced to a single equation of the same type as the 
equation for the transverse waves, which significantly 
exceeds the radius of the shell, then the displacements of 
the points of the shell cross section y(z,t) in the direction 
perpendicular to the axis are described by the equation 
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where  is the flexural rigidity of the shell, E and 
ρ

2
0ESrB =

M are Young's modulus and the density of shell material; 
ahS π2=  is its cross sectional area; a and h are the radius 

and the thickness of the shell; 2/0 ar =  is the radius 
of inertia of the cross section;  are external forces 
applied to the shell which cause its displacement in the 
direction y. 

( )tzF ,

Expression for the harmonic force is 
( ) ( )tkzieFtzF ω−= 0, . The solution of Eq.1 is sought in the 

form ( ) ( )tkzieytzy ω−= 0, . Substituting it into the equation, 
we obtain 
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The velocity amplitude is 0yiv ω−= . The ratio of the 
force ( )tzF ,  to the velocity v is the impedance of the 
cylindrical shell Zδ for the beam-type vibration mode 
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Fig. 1. Scheme of housing disposition 

 
Let us now examine the problem of reducing noise in 

the pipeline by using a cylindrical cover located coaxially 
with the pipe. Let us assume that the pipeline and the cover 
are both of an infinite length. Such design diagram is 
applicable for describing the measurement of sound by 
extended pipelines when their length significantly exceeds 
the length of the transverse wave λи and the wavelength in 
the medium (air) λс. 

Let us line up the axis z of a cylindrical coordinate 
system r, ϕ, z with the axis of the pipeline (Fig. 1). Assume 
that the displacement y(z,t) takes place in the direction 
ϕ = 0. The radii of the pipeline and the cover can be 
denoted by al and a2(a2 > a1), the velocity of sound 
propagation in air and density by c0 and ρc. Let there be a 
wave  propagating along the pipeline. ( tkzieVV ω−= 1

)

)

All the expressions for the pressure and the velocity in 
air and the displacements of the pipeline and the cover will 
contain ( tkzi ω−exp  as a factor, which cancels out in 
equations. For the sake of simplicity it will be omitted 
from here on. 

The sound pressures in air between the pipeline and 
the cover p1 and outside the cover p2 can be written in the 
form 

  ( ) ( )( ) ( )( )[ ,cos,,, 1
2
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Here 22 kkc −=µ   is the radial wave number; 

 and ( )1
1/ Hek cc ω= ( )2

1H  are the Hankel functions of the 
first and second kind. 

 
The force acting on the cover from both internal and 

external media in the direction ϕ = 0 equals 21 FFF −= , 
where 
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  (5) 
For this shell at 1ar =  and  the boundary 

conditions must hold which express the quality between 
the radial velocities of the walls of the pipeline and the 
cover  and  the radial velocities of air  and . 
The radial wall velocities  and  are related to the 
particle velocities , and  by  

2ar =

1v 2v rv1 rv2

1v 2v

1V 2V
ϕcos11 Vv =  and ϕcos22 Vv = . 

From the Euler's equation follows 
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Substituting Eq. 5 into Eq. 1 and considering the 
boundary conditions, we obtain the system of linear 
equations for amplitudes A, B, D and : rv
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Here H&  is a derivative of the Hankel function with 
respect to its argument; Z2 is the cover impedance 

. From here on we will omit the order in 
the Hankel functions and the argument

2
2
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( )2aµ . 
From the second Eq.6 let us express  and substitute 

the obtained value into the third equation. Then 
rv

 
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
⎪
⎭

⎪
⎬

⎫

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+

=−+=+

.0

,0,

2

1
2121

121
11

21

Za
HZHDBHAH

HDHBHAZvaHBHA

π

&

&&&&&

  

Solving this system of equations for D, we obtain 
( ) ( ) ( ) ( )[ ]

( ) ( )( ) ( ) ( )( ) ( )[ ]
( ) ( ) ( )( ) ( ) ( )( ) ( )[ ]1

1
22

1
1

2

1
21

1
1

22
1

11

1221
1

HaHHaH
aZ

HZH

HaHHaHH/

/HHHHZvD

&&&&
&

&&&

&&

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

−−

−=

π

  

To simplify the notation the following abbreviation is 
introduced 

 ( )( ) ( ) ( )( ) ( )[ ] [ ]21
1

22
1
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The denominator D can be represented in the form 

 46



ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004. 

 

( ) ( )( ) ( ) ( )( ) ( )[ ] ( )[ ]
( )
[ ]22

2

1
211

1
22

1
11

aZ
HZHHaHHaHH
π

&
&&&&& −−− , 

where [7] is the last multiplier. 
Subtracting the second term from the first, we obtain 
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Let us define the sound insulation of the cover as the 
difference in the levels of the sound pressure generated by 
the pipeline at some r with and without the cover: 
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In the pipeline without a cover the sound pressure is 
D0. The amplitude of D0 is determined from the boundary 
conditions at  1ar =
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Substituting  and  into Eq. 8, we 
obtain 

20p ( )( )rDHp µ1
12 =

( ) ( )( ) ( ) ( )( ) ( )[ ]
( )( ) ( ) ( ) ( ) ( )[ ]1221

1
1

2

1
1

22
1

11
21lg20

HHHHaHaZ
HaHHaHHZR
&&&&

&&&&&

−

−
−=

π
.(9) 

The denominator in the logarithmic expression can be 
simplified by using the relations 
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Eq.10 includes derivatives of the Hankel functions, 
which in principle can be eliminated, but it would not lead 
to simpler expressions. It is more convenient to make use 
of the exponential form of notation 
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The amplitudes  and the phases  have been 
tabulated in [7]. Substituting these expressions into Eq. 10, 
we obtain 
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( ) ( )Θ′−Θ′=∆ coscos 1121 akak cc δδ ;  2п
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is the critical frequency at which the length of the 
transverse wave (without considering the inertia of the 

cross sectional rotation of the shell) equals the wavelength 
in air; Θ  is the angle between the direction of the 
cylindrical wave propagation in air and the plane z = 0. 

The components of the wave vector k and µ  are relited 

to the wave vector ck
r

 in air by relations Θ= sinckk     
and Θ= cosckµ , from which ( )ckk /arcsin=Θ . At 

 the value of ckk > Θ  becomes imaginary; no noise is 
emitted in the direction radial to the pipe. The sound wave 
propagates only along the pipe. 

Let us examine the obtained expression (11). The 
square of the amplitude  never becomes zero. At high 
argument values, when 

2
1'C

1cos >>Θakc ; 

, then the phase Θ= cos/2' 2
2
1 akC cπ
( ) 4/3cos221 πδ −Θ≈′ aka c , and the phase difference 

( ) Θ=−Θ=∆ coscos 12 dkaak cc (  is the 
clearance between the pipeline and the cover). At small 
argument values, when 

12 aad −=

3cos <<Θakc , 

( )22
2
1 cos/2' Θ≈ akC cπ , then the phase 

 ( ) ( ) 4/3cos 2
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and the phase difference  
 ( ) 42

1
2
2

22 /aacoskc −Θ−=∆ π . 
In this way the magnitude of sound insulation is 

determined by the behavior of Z20 and  in the second 
term of the logarithmic expression. When they become 
zeros, R also equals zero. 

∆sin

The dimensionless part of the cover impedance is 
Z2 = 0 at 
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or  
 ffk /arcsin≈Θ . 
Those are the known coincidence angles when the 

length of the transverse wave is cλλ =0 , the latter being 
the wavelength in air. 

The values of lie0=∆sin  at πm=∆ , where 
...,2,1=m  is an integer number. In order to clarify the 

physical nature of this condition, let us analyze the asymp-
totic of the Hankel function at . Then 1cos1 >>Θakc

πmdkc =Θ=∆ cos  or 12cos2
aadm c −==

Θ
λ . In the latter 

expression rc λλ =Θcos/  is the trace of a wave which is 
propagating at the angle Θ  along the axis ( ) µπλ /2=rr . 
The value of sin∆  will equal zero when a whole number 
of the wave trace half-waves would fit into the clearance 
between the cover and the pipeline. This is the condition of 
sound wave resonance in a layer with thickness d. It should 
be noted that the first resonance arises at m = 1, when 

( ) π=−Θ=∆ 12cos aakc . Then π>Θ 1cos akc  and 
π>Θcos2akc , since it almost never occurs in practice 

that the radius of the cover is twice as big as the radius of 
the pipeline. Usually . In that case it is possible 
to use the asymptotic formulas for the Hankel function to 

2/ 12 <aa
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achieve a level of accuracy sufficient for practical 
purposes, and to compute the sound insulation of the cover 
according to the formula 

( )ΘΘ
−= Θ cossin·cos1lg20 cos

20
2

dkeZ
ac

MR c
dikc

πρ
ω , (12) 

when π>Θcos1akc . 
If the resonance and coincidence areas are eliminated, 

then the magnitude of the second term under the logarithm 
sign in Eq. 12 is much greater than one. Expression (11) 
can thus be simplified 
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or at π>Θcos1akc  

 ( )ΘΘ
≈ cossincoslg20 20

2
dkZ
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MR cπρ
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Validity of these formulas can be tested: they are not 
valid if R is sufficiently close to zero or assumes a negative 
value. For practical purposes a sufficiently accurate value 
is computed to be R > 10 dB.  

Results 
An analysis of the obtained results leads to the 

following conclusions. Analysis of the roots of the 
dispersion equation at n = 1 shows that for low frequencies 
there is a real root which describes beam-type transverse 
vibration up to frequencies approximately equal to 

, where п2,0 ff ≈ acf π2/пп =  is the frequency of the 
longitudinal resonance. For higher frequencies more pre-
cise values of the cover impedance must be used. In 
principle, they are not difficult to determine. 

Analysis shows that the obtained expressions are valid 
for all frequencies if in stead of the impedance Z2 we 
substitute the exact value of the impedance  (Eq. 5) 
for n=1 multiplied by 

,1δZ

2aπ , i.e., =2Z δ1Z 2aπ . In the 
expression for  k is just replaced by δ1Z Θsinck . The 
expression turns out to be more cumbersome, but this 

difficulty can be easily overcome with the use of computer 
technology. 

Attention should be given to the fact that computation 
of R at n=1 can be done in accordance with the 
methodology of evaluating effectiveness of the cover at 
n=0 [5]. To that end magnitudes and phases  and 1C 1δ  
should be replaced by magnitudes and phases of the first 
order derivative of the Hankel function  and 1C′ 1δ ′ . 
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D. Gužas, P. Svensson  

Gyvenamųjų namų lifto kabinų žemųjų dažnių garso izoliacija 

Reziumė 

Šiuolaikinėje namų statyboje plačiai naudojami liftai žmonėms ir 
kroviniams kelti. Nors dabartiniai modernūs liftai, palyginti su kitais 
triukšmo šaltiniais, veikia tyliai, jų judėjimas šachtose sukelia žemųjų 
dažnių virpesius ir per stačias konstrukcijas išspinduliuoja atitinkamo 
dažnio triukšmą. 

Straipsnyje pateikiama teorija, kuria remiantis galima prognozuoti 
žemųjų dažnių virpesių ir triukšmo sumažinimą taikant atitinkamus 
cilindrinius gaubtus (šachtas). 
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