
ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004

Real time system modeling and analysis

E. Kazanavičius, A. Liutkevičius, V. Dusevičius, V. Kazanavičius

Digital Signal Processing Laboratory, Kaunas University of Technology, Lithuania

E-mail: ekaza@dsplab.ktu.lt

Introduction

The employment of various real time systems have
been spread widely last few years. These systems are used
in industry, telecommunication networks, ultrasonics and
other domains. A Real Time System (RTS) is a digital
signal processing (DSP) system which accuracy depends
not only on the output, but also the time at which the
output is produced.

Embedded systems are very important group of RTS.
An Embedded DSP system consists of hardware and
software which forms a component of some larger system
and which is expected to function without human
intervention. A typical embedded system consists of a
single-board microcomputer with a software in ROM,
which starts running some special purpose application
program as soon as it is turned on and will not stop until it
is turned off. Embedded real time systems are widely used
in mobile phones, domestic appliances, production process
control etc. This is very large, rapidly growing application
area.

DSP system development process is difficult,
involving several stages. This process includes not only
software, but hardware development as well. The main
stages of the process are hardware and software design,
implementation, testing, integration and maintenance [14].

Delivery time to a client is the main criterion for the
RTS developer. According to research, an embedded
system is out of date after 6 months [17] since it was began
to develop. After this period, a DSP system needs to be
redesigned to meet the new requirements.

The DSP systems cost is another important criterion as
well. The real time system modeling is one of the strategies
to reduce the developing time and the cost of the
developed system. For example, modeling can be used
instead of expensive prototype development. The RTS
simulation can be performed by computer aid to test the
behavior of the system. Such a method substantially
reduces RTS development process cost and time: there is
no need to develop expensive prototypes.

MATLAB, SIMULINK, STATEFLOW, DYMOLA
and PTOLEMY II are widely used modeling and
simulation tools. MATLAB [6], SIMULINK and
STATEFLOW are products of Mathworks Inc., which are
used for design and modeling of various computer systems.
These tools are not initially designed for RTS, but can be
used in this domain too. DYMOLA is a modeling tool
based on MODELICA modeling language [10]. It enables
the analysis of complex systems that incorporate
mechanical, hydraulic, electrical, thermal components and
control systems. PTOLEMY II is an open project of

Berkeley University of California [13]. The embedded
systems modeling tool is created during project period.
This tool is initially dedicated for development of RTS.

The mentioned modeling systems solve RTS
development and modeling problem in some ways. But
these tools have several drawbacks. Some of them are
mentioned below:

- Restricted modeling possibilities: MATLAB can be
used mainly for mathematical modeling, but is not suitable
for development of other system models creation.
SIMULINK, STATEFLOW and DYMOLA can be used
for functional and behaviour modeling only.

- The need to have the additional knowledge about
the tool: MATLAB requires the knowledge of a special
language; the user introduces the mathematical model of
the time on his own, so there is possibility for errors.

- There is no code generation or it is not effective:
MATLAB, SIMULINK and STATEFLOW models can be
used for the C code generation, but such a code can not be
directly ported to specific DSP architecture; DYMOLA
can not be used for code generation; PTOLEMY II code
generation is in a development stage.

- Modeling can not be performed in a real work
space with real input signals: no one of mentioned tools
can perform modeling process in a real working
environment (potentially PTOLEMY II can be used for
this, because it is written in JAVA). Modeling is performed
with randomly generated data.

The component based modeling technique presented in
this paper solves most of these problems.

Methodology
The component based modeling technique is presented

in this paper. This technique uses two technologies: JAVA
and XML. JAVA language is selected according to its
features:

- Object Oriented;
- Portable;
- JAVA components can be reused;
- The possibility for faster developing (compare with

non object oriented languages);
- Popularity: JAVA language is widely used in

embedded systems and becomes so popular like C
language is;

- Real Time JAVA specification is created: there are a
number of RT JAVA versions under development, which
could be used for RTS.

JAVA language [2] is very attractive for RTS
developers. It accelerates the development process and
what is most important it is portable. This means that
JAVA programs can be executed on different hardware

 49

ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004

platforms without any code changes. The presence of
JAVA virtual machine is the only requirement for the
selected platform. There are few versions of JAVA
language, which are designed for embedded systems [1],
[9], [11], [15]. JAVA language is widely used in mobile
applications.

Research shows [18] that applications written in JAVA
have the same or even higher performance than written in
C language. Therefore, JAVA can be recommended for
RTS development.

The object oriented technique for RTS development
and modeling is presented in this article. This technique
includes constructing models of RTS in three levels:
functional, behavioural and architectural [17]. The
modeling software “KTU_RTSM” developed by our
laboratory is based on the proposed modeling technique
(see Fig.1).

RTS models are specified using the JAVA and XML
languages. Hence, these models can be used as a base for a
code generation. Besides, the modeling process can be
performed on a specific embedded platform, which has
JAVA VM. Such a modeling technique covers the major
part of RTS development process.

Component based RTS model
The JAVA and XML are specification languages for

the RTS. The JAVA language object orientation [2] is
important while constructing RTS models. Each RTS and a
computer system consists of various components. These
components can be software and hardware of some other
kind (e.g. system users). The component performs
particular functions and communicates with other
components. We propose the component based RTS
modeling technique when RTS model is created specifying
system components and links between them. The particular
component is an object which has its own attributes
(parameters) and set of methods, which describe the
components behaviour. Objects can be complex, i.e. they
can aggregate other objects (components). The modeling
process is an interaction between RTS components and
observation of that interaction. The JAVA programming
language ideally suits for such model creation. It operates
with objects and has such definitions as inheritance and
aggregation. RTS component performs specific functions,
so the component based RTS model creation is functional
modeling [17].

RTS can be considered as a complex component which
has set of inputs, set of outputs and specific function.
Hence, the component based RTS modeling can be
performed on desired abstraction level. It can be performed
on atomic components level, on complex components level
or on the highest system level.

The important feature of JAVA programming
language is its compatibility with XML technology [3],
[5]. The XML meta-language was selected to specify the
structure of modeled RTS components. This technology is
very popular among web developers, but can be used in
any domain due to such features:

- XML can be used for specifying data of any
complexity, amount or type.

- XML data can be read and understood easily.

- It is easy to create XML parsers.
- XML data can be created easily.
- This is a modern technology, which ensures the

versatility, maintainability and compatibility of the
developed software.

Mathematical modeling

Functional modeling

Behavioral modeling

Architectural design

Code generation

KTU_RTSM

Fig. 1. KTU_RTSM software functionality

The JAVA language is used to specify the functions
(actions) of particular RTS component while XML is used
to specify the internal structure of a component. Such a
solution enables to specify new components reusing
existing JAVA specifications. In that case it is sufficient to
create XML file describing the new component. Very high
abstraction level of RTS component is the main feature of
XML usage: all components are of the same type with
different functions and the internal architecture described
in XML files.

RTS component specifying using XML. RTS model
components are specified using XML data files. This
solution is convenient, because new components can be
created or existing components can be modified without
any JAVA code changes. Besides, XML description can be
easily extended with new features. The main feature of
XML usage is possibility to create the desired complexity
and abstraction level components without new JAVA
object type (class) creations. The following information is
described in components XML file:

- Component name – it is the main component
identifier. The name is unique: two components with same
name can not exist.

- Menu path – this information is used by modeling
environment. The path shows where component menu
needs to be placed.

- Inputs and outputs quantity – it is the initial
number of inputs and outputs. These values can be
changed dynamically depending on a particular
component.

- Parameters quantity – shows how much parameters
(attributes) component has. This value can vary from zero
to infinitive number of parameters.

 50

ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004

- Parameter name, index and initial value – this
information describes the main features of each parameter.
The parameter name is used only for XML clarity. The
main parameter identifier is an index. The value of a
particular parameter can be changed dynamically.

- Component actions (run actions) – it is set of
actions (run_actions block), which ensures the
functionality of the component. The sequence of actions
and JAVA class names, which are used to perform that
actions (run_action file) are described in XML file.
Component actions operate with data from component
inputs or with component parameters.

- Component popup menu actions – this information
is used by a modeling environment. It includes the menu
action name, JAVA class name, which performs this
action, and the parameter index, which is modified by this
action.

The XML file example is presented in Fig.2.
As it is mentioned above, the XML technology

prevents us from creation of new JAVA class for every
new type of component. The XML file is parsed and
particular RTS component instance is created according to
XML specification.

Simple (atomic) and complex components. Simple
or atomic RTS components are the lowest abstraction level
of components, which perform basic data processing
operations. These components are considered as undivided
and seamless. SimpleComponent type is used to describe
simple components of RTS.

It is a main component describing the class, which
involves a graphical component information (used by a
modeling environment), component parameters and
component actions.

The functionality of a particular component depends
on set of its actions. An action is an object, which performs
basic manipulations with the component input data or
parameters. The component has unlimited number of
actions. All classes, which describe actions, are the
subclasses of SimpleComponentAction class. Hence, a very
high abstraction level is achieved.

Actions are not dependent on a particular component –
the same action can be used by different components. For
example, actions GetInputs and SetOutputs are used by all
components, which have at least one input and output.

Generally speaking, the set of component actions
describes its function. The total impact on component data
performed by component actions is its function h(t):

 (1)))t(x(h)t(y =

where y(t) is the component output signal; x(t) is the
component input signal; h(t) is the transformation.

Every component has the set of parameters. Values of
these parameters can be changed using the component
popup menu. The number of parameters, initial values and
the popup menus are described in the XML file.

The high level of abstraction allows creation of RTS
components of any complexity and any domain. New
components are created by implementing new action
classes (or using existing) and creating a new XML file.
Hence, the advantage of objects reusing is taken in this
case. Reuse is the main feature of object oriented

languages, which allows systems development in a more
efficient way.

Fig. 2. RTS component XML file

Complex components are those, which aggregate some
part of RTS scheme (model), having the set of inputs and
outputs. Any RTS scheme can be saved as a complex
component. A complex component is created by the user,
which defines the inputs and outputs of the complex
component (a complex component can have no inputs or
outputs), the component name and menu path. The
functionality of the complex component is the same as
functionality of a scheme, which is aggregated by the
complex component. The complex component can
aggregate both simple and complex components. Hence,
the complex component is a hierarchical structure with
unlimited size and complexity.

This solution makes RTS modeling easier. There is no
need to create a big and complex RTS scheme with a lot of
components. The scheme is created gradually from
complex components, which aggregate the model parts
created before. Besides, such a solution allows user to
create the desired functionality components reusing
existing ones. According to three level model, such a
process is an architectural design [17], when algorithms are
distributed into hardware.

A complex component is an instance of
ComplexComponent class. This class inherits
SimpleComponent class. Hence, the complex component
can be considered as a simple component, which
additionally has both aggregated components set and links
between them set. The complex component has all features
of simple component.

Links between components. As mentioned above,
each RTS consists of components and links between them.
Link class instance is used to define the link. The attributes
of this class defines the link between one component
output and other component input. These attributes are
given below:

- The ID of the first component (obj1_id) – this is the
first component sequence number in a scheme (model).

 51

ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004

- The ID of the second component (obj2_id) – this is
the second component sequence number in the scheme
(model).

- The first component output index (obj1_outIndex).
- The second component input index (obj2_inIndex).
The link has only one direction. It can connect only the

output with input, but is impossible between two inputs or
outputs. The Link object is not a medium for data transfers
between components: this object is a rule, which defines
how data must be transferred between components. This
means that the link does not transfers data from one
component to an other, but shows to modeling
environment how it must be done.

Data types. One of the tasks was to create an universal
communication method between components, which
allows using any type of data. The common Object class is
used for such a purpose. Components operate with Object
type data, because in JAVA any data can be considered as
an object. The interpretation of the processed data is done
depending on a particular component type. It means, that a
component must convert (cast) the input data into such a
type, which it can process. Hence, a component does not
know the semantics of the input data and interprets this
data as requires the component function.

The behaviour modeling using the component
based RTS model. When the RTS model is created using
components and links between them, it is possible to
perform behaviour modeling of the designed system [17].
This modeling allows observation of the behavior of the
RTS during its lifecycle.

A data flow model is a popular way to describe the
systems behavior [7]. According to this model, each RTS
system can be described as an oriented graph, where nodes
(RTS components) perform some data processing and
edges correspond to the transfer medium between nodes. A
few data flow types exist. The synchronous data flow
(SDF) model is one of the best ways to describe DSP
systems. The synchronous DSP system is one in which all
of the sampling rates in the system are rationally related.
The SDF is ideally suited to a large set of DSP applications
such as digital communication (QAM, PSK, CDMA) and
filtering applications (wavelets, filterbanks, IIR, FIR) [12].

The component based RTS model can be named as
SDF [7]. RTS components correspond to SDF nodes and
links between components correspond to SDF edges.
Components activation schedule is determined once before
modeling process. But there is a difference between
traditional SDF and the presented RTS model. In the
proposed model the schedule is generated randomly, not
taking into account the links between nodes. The proper
functionality of the model is guaranteed by the internal
structure of a component. The component processes input
data not directly getting it from other components, but uses
buffering. The modeling process is performed iteratively.
Input data are fetched into a data buffer during one
modeling process iteration. After getting data, all
components perform data processing (the current data
which are in the buffer) and after this the next iteration is
performed. Some components operate with fictive data
during first modeling process iterations, but when the
system model becomes stable, correct results are obtained.
The time period while a system is unstable depends on the

size and the level of hierarchy (aggregation) of RTS
model. The modeling process is performed using separate
RunSchemeThread thread. This thread manages the data
flow between components by sending data from one
component to an other.

A particular component fully performs data processing
operations during a single iteration of the modeling
process. But in a real system the data processing can last
more than a single iteration. The easiest way to construct
such types of RTS models is to add delay components to
the model. The delay component acts as FIFO (first in first
out) type memory. Hence, in order to model the situation,
when some component performs data processing more than
single iteration, this component output needs to be
connected to a delay element. In this case, the data
processing results will be obtained after N iterations at the
delay component output. Analogically, more complex
components can be created for different usage, e.g.
components for synchronization or other types.

The Full RTS model is obtained by introducing time
into the model. Some parts of RTS or input data can be
analog. Besides, some RTS components can act
periodically, depending on time. Hence, the time is the
additional parameter, which is used during the modeling
process. SDF with the time parameter is called Timed
Synchronous Data Flow (TSDF) [12]. The presented
component based RTS model has time parameters as well.
It is considered, that a single modeling iteration lasts the
defined period of time. Hence, RTS components, functions
of which depend on the time can periodically perform their
actions depending on the pasted time period. According to
this, the presented component based RTS model is full and
can be used to describe RTS of any purpose and domain.

Modeling of a real time ultrasonic (UT) waveform
generator

The UT waveform generator plays an essential role in
testing and development of real time NDT systems. The
generator can be implemented as a software component or
a separate hardware component. Hardware real time
generators can be used as replacement to physical
environment, thus accelerating overall RT system test and
development process and eliminating the need of UT
measurement equipment. In this section we will create hard
real time UT waveform generator model using the
proposed component based RTS modeling technique.

The generator generates UT waveform which consists
of a reference echo, reflected by a water-sample A
interface and one echo reflected by the sample A-sample B
interface as shown in diagram the below (Fig. 3).

The output waveform y(t) is generated according to the
reference signal ref(t) which is the reflection from water-
sample A interface. The reflection from the interface
sample A-sample B echo(t) is obtained in the frequency
domain using the frequency dependant reflection
coefficients RAB(ω):

 , (2))](R*)]t(ref[FFT[FFT)t(echo BA ω1−=

where FFT-1 is the inverse discrete Fourier transform; FFT
is the discrete Fourier transform.

 52

ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004

reft∆ echot∆

Fig. 3. Lattice diagram of test setup

If the time of flight of the reference signal is ∆tref and
of the first echo - ∆techo, then the generator output can be
written as:

 (3))tt(echo)tt(ref)t(y echoref ∆−+∆−=

Using the proposed modeling technique, UT waveform
generator components were described with XML and
JAVA languages. The scheme was composed from the
described components and is shown in Fig. 4.

Fig. 4. UT wave generator model

The generation of one waveform is initiated by a
periodic start signal. The reference signal generation
component 1 prepares N samples of the reference signal
ref(t) and puts them into the internal buffer. After that the
discrete FFT is performed by the component 4. The
component 8 performs multiplication of the calculated FFT
by the preloaded reflection coefficients (from the
component 7). After that the inverse discrete FFT is
performed on multiplication results by the component 10.
The inverse discrete FFT result is the waveform of the
sample A-sample B echo, which has to be delayed by
∆techo.The delay function is performed by the component 6

and the delay ∆techo is generated by the component 3
according to the geometry of the specimen.

Similarly, the reference signal is delayed by the value
∆tref which is given by the component 2 and the delay is
performed by the component 5.

The delayed reference and echo are summed by the
component 9 and visualized using an oscilloscope – the
component 11.

In this model we used the frequency dependant
reflection coefficients RAB(ω), measured using the 5MHz
0.75” probe and 100MHz 12-bit ADC:

Fig. 5. Interface A-B reflection coefficients

During the experiment with the generator, we fed the
real experimentally measured reference signal to the
generator input (Fig. 6):

Fig. 6. The reference signal at generator input

The generated output echo signal is shown in Fig. 7.

Fig. 7. The generated signal at generator output

Experimentally measured in a physical environment
(dashed) and simulated (solid) results are shown in Fig. 8.

Fig. 8. Simulated and measured signals together

The modeled results are very close to the measured.

Hence, the experiment proves that the component based
modeling technique is correct and can be applied for RTS
modeling.

 53

ISSN 1392-2114 ULTRAGARSAS, Nr.2(51). 2004

Conclusions
The object oriented technique for RTS development

and modeling is presented in this paper. The modeling
process includes functional modeling, behavioural
modeling and architectural design. The RTS modeling is
performed by creating the component based model of RTS.
RTS is considered as a complex hierarchical structure,
which is composed of various subsystems, called
components. The RTS component is specified using JAVA
programming language and the internal structure of the
component is specified using XML meta-data. The RTS
architectural model is created using components and links
between them. Components can be complex, i.e. can
aggregate other components. Such a solution guarantees
the desired abstraction level of the model and allows user
to create convenient components by reusing existing
components. Since RTS components are described using
the JAVA language, the component based model can be
used as a basis for a code generation.

The RTS modeling software was created using the
proposed modeling technique. This software is suitable to
create RTS models of desired complexity and abstraction
level. The behaviour of RTS models can be observed as
well. Since component has a high abstraction level, this
modeling system can be used not only for RTS modeling.
The implemented modeling system is suitable for modeling
of any type of real world systems, which can be described
using mathematical equations. The experiments prove that
the proposed modeling technique is correct and modeling
results are the same as theoretical.

References

1. Comp L. Runtime Abstractions in the Wireless and Handheld Space
/ L. Comp, T. Dobbing. Intel Technology Journal., 2003.Vol. 7.
Issue 1.

2. Eckel B. Thinking in Java. 2nd Edition. Prentice Hall. 2000. 1200 p.
ISBN 0-13-027363-5.

3. Hall M. Core Web Programming, 2nd Edition / M. Hall, L. Brown.
Sunsoft Press. 2001. 1440 p. ISBN 0-13-089793-0.

4. Harold E. R. XML 1.1 Bible, 3rd Edition. Willey Publishing Inc.,
2004. 1022 p. ISBN 0-7645-4986-3.

5. Harold E. R. Processing XML with Java. Addison-Wesley, 2002.
1100 p. ISBN 0201771861.

6. Hunt B. R. Guide to MATLAB: For Beginners and Experienced
Users / B. R. Hunt, J. Rosenberg, R. L. Lipsman. Cambridge
University Press. 2001. 348 p. ISBN 052100859X.

7. Lee E. A. Synchronous data flow / E. A. Lee, D. G. Messerschmitt.
Proceedings of the IEEE. 1987. Vol. 75. No. 9. P. 1235-1245.

8. Marven C. A simple approach to digital signal processing /C.
Marven, G. Ewers. A Wiley-Interscience publication. 1996. 248 p.
ISBN 0-471-15243-9.

9. Moertiyoso N. Designing Wireless Enterprise Applications on
Mobile Devices /N. Moertiyoso, K. Choong Yow // First
Iinternational Conference On Information Technology &
Applications (ICITA 2002). Bathurst, Australia. 2002. ICITA2002
ISBN 1-86467-114-9.

10. Otter M. Hybrid Modeling in Modelica Based on the Synchronous
Data Flow Principle / M. Otter, H. Elmqvist, S. E. Mattsson. 10th
IEEE International Symposium on Computer Aided Control System
Design (jointly with the 1999 Conference on Control Applications).
Hawaii, USA. 1999. ISBN 0-7803-5449-4.

11. Paal P. Java 2 Platform Micro Edition [online]. 2001, [last visited
2004-05-16]. Address:http://www.hut.fi/~opaal/netsec/j2me.pdf.

12. Pino J. Z. Cosimulating Synchronous DSP Applications with Analog
RF Circuits / J.Z.Pino, K.Kalbasi // 32nd Asilomar Conference on
Signals, Systems and Computers. Monterey, California. 1998.

13. Ptolemy II: Heterogeneous Concurrent Modeling and Design in Java
[online] / J. Davis, M. Goel, C. Hylands, et. al. Memorandum
UCB/ERL M99/44, EECS. University of California, Berkeley, CA,
USA. 1999. [last visited 2004-05-16]. Address:
http://ptolemy.eecs.berkeley.edu/publications/papers/99/HMAD/

14. Sommerville I. Software Engineering, 6th Edition. Addison-Wesley.
2001. 677 p. ISBN 0-201-39815-X.

15. Sun Microsystems, Inc. J2ME Building Blocks for Mobile Devices
[online]. [last visited 2004-05-16]. Address:
http://java.sun.com/products/cldc/wp/KVMwp.pdf

16. World Wide Web Consortium. Extensible Markup Language (XML)
1.0 (Third Edition) [online]. 2004, [last visited 2004-05-16]. Address:
http://www.w3.org/TR/REC-xml/

17. Kazanavičius E. Signalų apdorojimo sistemos. Technologija, 2004.
196 p. ISBN 9955-09-639-X.

18. Java and C Performance Evaluation for DSP Applications / E.
Kazanavičius, V. Dusevičius, A. Liutkevičius, R. Žukaitis.
Conference at GSPx 2004, Embedded Applications: Software &
Hardware. Santa Clara, CA USA. Sept. 27-30, 2004.

E. Kazanavičius, A. Liutkevičius, V. Dusevičius, V. Kazanavičius

Realaus laiko sistemų modeliavimas ir analizė

Reziumė
Pateiktas realaus laiko sistemų objektiškai orientuotas

komponentinis modelis. Jis sudarytas naudojant JAVA ir XML kalbas
realaus laiko sistemų komponentams specifikuoti. Modelis ir jo pagrindu
sudaryta sistema naudojami įterptinių sistemų programoms sintetinti
tiesiogiai iš specifikacijos. Sistema analizuojama ir modeliuojama
komponentiniais modeliais, tai leidžia aprašyti bet kokias sistemas ir bet
kokio abstrakcijos lygio. Atlikti realaus laiko ultragarsinių signalų
generatoriaus modeliavimo eksperimentai.

Pateikta spaudai 2004 05 31

 54

