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Introduction 

There are many applications of air – coupled 
ultrasonics in nondestructive evaluation [1], distance [2] 
and thickness measurements [3], testing of diffusion bonds 
[4], investigation of surfaces of the objects [5], flow 
measurements [6] and etc. The air – coupled ultrasonic 
investigation of materials is very attractive, because it 
avoids the disadvantages caused by liquid or semi - liquid 
couplants, especially in cases when humidity can change 
properties of the materials or even destroy the material, 
such as honeycomb structure. Also use of contact 
ultrasonic systems is restricted in the case of complex 
geometry structures. The most common air – coupled 
ultrasonic transducers are based on piezoelectric and 
electrostatic effects. The transducers of the first type 
exploit piezoelectric materials such as PZT, and tend to be 
resonant, and therefore require a special backing in order 
to obtain good damping. However, they can be used in the 
industrial applications where robust construction is 
important [7], including the flow meters of high pressure 
gases [8,9]. The mismatch of the specific acoustic 
impedances between most piezoelectric materials and 
gasses can be improved using the matching layers. Also 
application of the matching layers improves bandwidth of 
the piezoelectric transducers. 

Objective of this work was to develop robust wideband 
air – coupled ultrasonic transducers, suitable for industrial 
applications and to investigate their. 

Design of the transducer 

The schematic drawing of the air – coupled ultrasonic 
transducer is shown in Fig.1.  The wideband and sensitive 
ultrasonic transducer is developed using the matching 
layers. The front face matching was achieved using two 
quarter – wave layers 1, 2.  The back face of the 
piezoelement 3 is loaded with one quarter – wave matching 
layer 4. All this construction (front matching layers, 
piezoelement, the back matching layer) is glued together 
and fixed by a metallic ring 5. the inner diameter of the 
metallic ring 5 is bigger than the diameter of the 
piezoelement 3 and filled with a high – loss backing 
material 6. The front side of the first matching layer is 
glued to the housing of the transducer. All inner space of 
the transducer is filled with a high – loss backing material 
such as a tungsten – epoxy mixture. This rigid construction 
provides service ability under a high pressure and long 
time operation of the transducer. 

To improve sensitivity of the ultrasonic transducers the 
air backed piezoelectric elements can be used. Using 
resonant systems only one transducer can give increase in 

sensitivity nearly 10 times (20 dB) compared to 
conventional damped transducers, but such a design is 
fragile. Moreover, the ultrasonic transducers with an air 
backing are narrowband. 

 
 
Fig. 1. Schematic drawing of the air – coupled transducer structure: 

1, 2 – front face matching layers; 3 – piezoelement of the 
transducer; 4 – back matching layer; 5 – metallic ring; 6 – 
high – loss back material; 7 – glue; 8 – housing of the 
transducer; 9 – connector 

Modeling of transfer functions of the ultrasonic 
transducer 

Graphical representation of the model of the 
multilayered air – coupled ultrasonic transducer is shown 
in Fig. 2. 

 
 
Fig. 2. Model of ultrasonic transducer. 0 – piezoelement, 1 -  damper, 

2 – surrounding media, 3 – back matching layer, 4, 5…m – 
front matching layers, EG – electric voltage, I – current, Z1G, 
Z2G – electrical impedances 

The transfer function of such a multilayered structure 
can be obtained using one – dimensional approach based 
on a matrix calculus. The matrix equation of the 
multilayered structure can be written as [11], [12]: 
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where [A*] is the matrix of the transducer, F and v are the 
force and the particle velocity on the boundary between the 
m – th matching layer and the surrounding media. The 
matrix of the ultrasonic transducer [A*] is described by the 
following equation: 
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where [A] is the matrix of the piezoelement, [S(m)] is the 
matrix of the system of the front matching layers. The 
matrix for one non piezoelectric layer can be written as: 
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where ( ) iii j λπωαγ /2+= , αi(ω) is the attenuation 
coefficient of an ultrasonic wave in the i-th layer, 

fcii /=λ is the wavelength of an ultrasonic wave in the i-
th layer, ci is the phase velocity of an ultrasonic wave in 
the i-th layer, di is the thickness of the i-th layer, Zi is the 
acoustic impedance of the i-th layer, fπω 2= , 1−=j . 
The matrix of a multilayered structure can be obtained 
multiplying in consecutive order the individual matrixes of 
all layers. 

The transfer function of the multilayered 
piezotransducer can be calculated from the transducer 
matrix coefficients using the following equation: 
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Calculations were carried out for several cases. The 
transfer function for a damped (tungsten – epoxy mixture 
z1=6.2 Mrayl) piezoelement without matching layers, the 
transfer function of the transducer with one front quarter 
wave matching layer (fiberglass z4 = 4.48 Mrayl), the 
transfer function of the transducer with two front quarter 
wave matching layers (fiberglass z4 = 4.48 Mrayl and 
silicone z5 = 1.12 Mrayl), the transfer function with two 
quarter wave front matching layers and one quarter wave 
back matching layer (fiberglass z3 = 4.48 Mrayl) were 
calculated. The influence of an electrical matching circuit 
was evaluated as well. Electrical matching circuit consists 
of inductance (Z1G = jωL) and resistance (Z2G = R). 

Results of calculations are presented in Fig. 3 and 
Fig.4. It is essential to notice, that all curves are 
normalized according to the curve 1 in Fig. 3 and Fig. 4. 
Fig.3 and Fig.4 show that ultrasonic transducers without 
matching layers have only one maximum at the resonant 
frequency. Application of one quarter wave fiberglass 
matching layer increases the transfer function value more 
than 5dB and allows to widen the bandwidth (Fig. 3, curve 
2). Higher efficiency and wider bandwidth can be achieved 
adding on two quarter wave front matching layers which 
are made of fiberglass and silicone. In this case the 
transmission coefficient increases by 12 dB (Fig. 3, curve 
3).  

Application of the back quarter wave matching layer 
allows increase the transmission coefficient up to 17 dB 
(Fig. 4, curve 2). Peeks of the transfer function can be 

flattened and efficiency increased using electrical matching 
circuits.  

 
 
Fig. 3. Calculated transfer functions of the air – coupled ultrasonic 

transducer. 1 – transfer function of damped transducer 
without matching layers, 2 – transfer function of damped 
transducer with single λ/4 front matching layer, 3 - transfer 
function of damped transducer with double λ/4 front matching 
layer 

 

Fig. 4. Calculated transfer functions of the air – coupled ultrasonic 
transducer. 1 – transfer function of damped transducer 
without matching layers, 2 – transfer function of damped 
transducer with double λ/4 front and single λ/4 back matching 
layers, 3 - transfer function of damped transducer with double 
λ/4 and single λ/4 back matching layers and electrical 
matching circuit. 

Experimental setup 
The block diagram of the experimental system is 

shown in Fig.5. 
All components of this system can be divided into 

three main parts: the transmitter unit, the receiver unit and 
the scanner. 

The transmitter part consists of the low voltage 
arbitrary waveform Hewlett Packard HP33120A generator 
and the high voltage generator. Maximal voltage at the 
output of the high voltage generator is 500V. Voltage can 
be increase up to 2500V using transformers. For excitation 
of the transmitter sine burst signals were used.  

The receiver part is composed of the following 
elements: preamplifier and amplifier with a gain control. 
The low noise 40dB preamplifier is connected directly to 
the receiver in order to improve signal to noise ratio. The  
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Fig.5. Block diagram of the experimental system 

 

ain amplifier is controlled by a personal computer via 

s at the output of the amplifier are captured 
by t

ental investigation of air – coupled 

ions of the air – coupled 
ultra

n pulse of the half period is presented in 
Fig.

the received signal covers spectrum of the excitation signal 

using an excitation 
puls

m
PC104 bus. Gain of the amplifier can be changed from 
14dB to 54dB. Bandwidth of the amplifier is from 200 kHz 
to 1 MHz. 

The signal
he Hewlett Packard HP54645A digital oscilloscope. If 

signal to noise ratio is very low, the signals can be 
averaged by the oscilloscope. Averaging of the signals can 
give significant improvement of the signal to noise ratio, 
but measuring time can dramatically increase depending on 
an averaging number. After that signals are transferred via 
the IEEE – 488 interface to a PC for storage and 
processing. The scanning system is designed in such a way 
that the ultrasonic transmitter is at the fixed position and 
the ultrasonic receiver is moved during the scanning 
process.  

Experim
ultrasonic transducers 

Experimental investigat
sonic transducers were performed using the 500 kHz 

piezotransducer at the different distances – from 50 mm to 
500 mm. Duration of the excitation pulses were from half 
to eight periods. 

The excitatio
 6. Duration of the pulse is 1 µs and amplitude of the 

pulse is 4.7 V. The spectrum of this pulse is shown in Fig. 
7. The width of the spectrum at the -6 dB level is 750 kHz. 
The received and amplified ultrasonic signal after 
excitation with the half period pulse is shown in Fig .8. In 
this case the distance between transducers was 50 mm. The 
spectrum of this signal is shown in Fig. 9 (curve 1). The 
width of the signal spectrum at the -6 dB level is 250 kHz 
and what corresponds to 48% from the central frequency of 
the transducer. When the distance between transducers 
increases, the amplitudes of spectrum decreases (Fig. 9). 
Also the width of the signal spectrum becomes narrow due 
to the frequency dependent attenuation in air. The 
spectrum of the signal depends on the spectrum of the 
excitation signal as well. The main part of the spectrum of 

between points A and B (Fig. 7.). Decrease of the  
amplitude of the spectrum of the excitation pulse agree 
with the spectrum of the received signal (points C and D in 
Fig. 9) only at small distances between transducers, when 
attenuation of ultrasonic waves in air can be neglected. For 
bigger distances this does not hold.  

The improvement of the amplitude of the received 
signal and his spectrum can be obtained 

e with the symmetrical spectrum. An example of two 
periods excitation pulse and his spectrum are shown in Fig. 
10 and Fig .11. The maximum of spectrum is a little bit 
displaced from the transducers central frequency. The 
signal at the output of the amplifier, when distance 
between transducers is 50 mm, is shown in Fig. 12. 
Dependence of the spectrum of the received signals on 
distances from 50 mm to 300 mm is shown in Fig. 13. In 
this case the components of spectrum are changed. The 
amplitude of frequency 550 kHz at the point H is higher 
than the amplitude at the point G. It gives two maximums 
in the spectrum of the received signals (points E and F). 
These points corresponds to the points H and G in 
spectrum of the excitation signal. At the 100 mm distance 
between transducers both amplitude maximums are equal. 
In this way spectrum of the wideband air – coupled 
ultrasonic transducers can be adjusted by excitation pulse 
at different distances. Example of the narrowband 8 
periods excitation pulse and its spectrum is shown in 
Fig.14 and Fig. 15. A long excitation pulse (Fig. 14) gives 
more concentration of the spectrum components about 
500kHz within a narrow band (Fig. 15). The maximum of 
the spectrum precisely corresponds to the central frequency 
of the transducers. The signal at the output of the amplifier 
when distance between transducers is 50 mm is shown in 
Fig. 16. Dependence of the spectrum of the received 
signals on distances from 50 mm to 300 mm is shown in 
Fig. 17. Using narrowband signals for excitation of the 
wideband transducers allows tuning frequency of the 
ultrasonic wave for specific tasks. The experimentally 
measured transfer functions are shown in Fig. 18. 
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Fig.6. Time diagram of 0.5 period excitation signal 
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Fig.13. Dependence of a spectrum of the signal vs. distance between 

transducers. Distances between transducers: 1- 50mm, 2 – 
100mm, 3 – 150mm, 4 – 200mm, 5 – 250mm, 6 – 300mm. 

 
Fig.7. Spec um of excitation signal; a.u. – arbitrary units 
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Fig.14. Time diagram of 8 periods excitation signal 

 
Fig.15. Spectrum of excitation signal; a.u. – arbitrary units 
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Fig.17. Dependence of a spectrum of the signal vs. distance between

stigation of aerospace materials is one of the most 
imp nt NDT tasks. Generally in most cases testing is 
perfo ed using various couplants. However, in many non 
– d ctive evaluation tasks, such as investigation of 
aero e composite, honeycomb structures, whose 
prop es may by ged or destroyed by liquid or semi 
liqui ouplants, this technique can not be used. Also, 
liqu upling can not be used when water can fill defects 
and detectability of the defects may be reduced. In the 
me ed cases air – coupl t aso c investigation of 
materials is v a i e 
disadvantages caused by liquid or semi liquid couplants

coup
mism  
transmitter/receiver, air and the material under the test. At 
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Fig.16. S
betw ers 50 mm. 

 
transducers. Distances between transducers: 1- 50mm, 2 – 
100mm, 3 – 150mm, 4 – 200mm, 5 – 250mm, 6 – 300mm. 

 
Fig.18. Transmission losses of air – coupled ultrasonic transducers vs. 

distance between the transducers when duration of the 
excitation pulse is 1 – 8 periods, 2 – 2 periods, 3 – 0.5 periods. 

Experimental investigation of aerospace materials 
Inve
orta

rm
estru
spac
erti  chan
d c

id co
 the 
ntion ed ul

ctive
r

, be
ni

causeery attr  it avo ds th
. 

However, there are some problems associated with air–
led ultrasonic technique. The first of all, significant 
atch of acoustical impedances between ultrasonic

a single interface between water (Z=1.5 MRayl) and 
carbon fiber reinforced plastic (Z=4.5 MRayl) the 

smission coefficient is 0.75, but at interface between 
air (Z=0.0004 MRayl) and carbon fiber reinforced plastic 
the transmission coefficient is only 3.55·10-4. So, when the 
coupling medium is air, the energy transmission coefficient 
is very small. The second problem, but not so important 
like the previous, is attenuation of ultrasound energy in air. 
Objectives of the following experiments were to verify 
possibility to investigate aerospace materials using 
wideband air – coupled ultrasonic transducers.  

Experimental investigations of materials were carried 
out with two types of materials – glass fiber reinforced 
aluminum (GLARE3 – 3/2) and carbon fiber reinforced 
plastic (CFRP). These materials are in use in aerospace 
industry. The GLARE3 – 3/2 material is made of 
alternating layers of aluminum and fiberglass bonded 
together. The 1.4mm GLARE-3/2 plate was selected as a 
test sample. This sample consists of three layers 0.3mm 
aluminum alloy and two layers of 0.25mm thickness 
prepreg between aluminum. The prepreg layer is composed 
of two layers of glass fiber in an epoxy resin. Each prepreg 
layer is 0.125mm thick. 

This test sample contains artificial delamination 
defects of the different diameters: 25, 12, 8, 6 and 3 
millimeters. The defects are made of sealed teflon.  
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Experiments were carried out using two testing 
techniques – common through transmission testing 
technique and through transmission testing technique with 
Lam

rence can be clearly seen in a B 
– sc

w amplitude zone, H.A. 
– high amplitude zone) 

50m m 
dela he 
thro b 
wave gnal 
to no r of required averaged 
signa  be smaller, than in the through transmission 
testing technique. Fig.22 shows peak – to – peak 
amplitudes in the defect free and defective zones.  

testing technique 

 sc  o e a m  c i e 
through trans ission  m b w ve  
amplitude zone, H.A. – high a ne) 

 

F  waves due to 

es higher in the defect free zone and 2.5 times 
hig n the defective zone. Also ratio of the signals in the 
defect  and the defective zones is higher using Lamb 
wav

mples were investigated using one – 
sid ing technique with Lamb waves. These test 
sam ains impact damages of different intensity. 
Thickness of the sample is was not the same along the test 
sam g.23), and testing by Lamb waves was 
com ated.  

One – side access experiments with Lamb waves were 
carried out without averaging of the signals. 

b waves. As the external layers of this material are 
made of aluminum, which is a high impedance material (Z 
= 17Mrayl), losses are more than 130 dB and signal to 
noise ratio is very low. Investigation of this test sample 
was carried out using signal averaging. 

Fig.19 shows the amplitude C – scan of the GLARE3 
– 3/2 samples with 25mm delamination defect.  The 
experiment was carried out in the through transmission 
mode. The region of the delamination can be easy 
distinguished. Amplitudes of the transmitted ultrasonic 
signals are significantly different for both – defect free and 
defective zones. This diffe

an of the defective zone (Fig.20). 

 

Fig.19. C - scan of the area with 25 mm defect carried out in the 
through transmission mode. (L.A. – lo

Fig.21 shows the amplitude C – scan of the 50 × 
m2 area of the GLARE3 – 3/2 samples with 25m
mination defect. Experiment was carried out using t
ugh – transmission testing technique with the Lam
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ise ratio is better and the numbe
ls can

 
Fig.20. B – scan of the defective zone using through transmission 
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Fig. 23. Cross – section of the test sample 

As the CFRP is a material of a low acoustic 
impedance, signal to noise ratio is significantly higher in 
comparison with high impedance materials (e.g. GLARE). 
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Fig.24 shows the ultrasonic image of the CFRP plate 
with the 1J impact damage. The defect is very small and 
can 

 

ain problems of are high attenuation of ultrasound in 
gases, strong fluctuations of the received signals due to 
tu lence and shift of the ultrasonic beam from the 
radiation direction caused by the high velocity flows. Due 
to these reasons the shape of the received ultrasonic signal 
is strong distorted, especially at high flow velocities. 
Measurements results can mproved using signal 
processing techniques. O em is application coded
sequences. 

whic
was r a phase modulation of the high frequency 
carrier. The frequency of the carrier was 500 kHz, which 

were tested in air flows. 
Obj

uring section 
with

ultrasonic signal when the flow velocity 8.5m/s 

Conclusions 

The developed air – coupled ultrasonic transducers due
to thei ayers

ents 
e to a wide bandwidth of the transducers it is 

pos o tune up the frequency of the excitation signal 
for ific cases independent of surrounding media. Due 
to a s rt transient response free these transducers are for 
excitation and reception of the coded sequences. The rigid 
constru tion of the transducers allows to use them in a high 
– pres re environment. 
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R. Kažys, A. Vladišauskas, E. Žukauskas 

čiajuosčiai ultragarsiniai keitikliai matuoti oro aplinkoje  

Reziumė 

Nagrinėjami plačiajuosčiai ultragarsiniai pjezokeitikliai darbui dujų 
aplinkoje. Pateikta keitiklio konstrukcija, sumodeliuotos keitiklio 

avimo funkcijos įvertinus suderinimo sluoksnių įtaką. Atliku
eksperimentinį keitiklių tyrimą, nustatytos jų laikinės bei dažninės 

rakteristikos esant skirtingam sužadi

plastmasinėms) tirti ir dujų srauto greičiui 
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